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Foreword

It 1s hoped that the following design theory will be of use
to those involved in the pressurized cylinders industry, and
in particular to:

e Designers and manufacturers.

e Technical staff within user organizations.

e Inspection and testing bodies involved in product
verification.

e Regulating bodies concerned with safety.

While the work is addressed to high-pressure gas cylinders

in particular, it is equally applicable to other pressurized

cylinders and pipes of similar transverse gecometry and

mechanical properties, subject to the same stress system.






Introduction

Over the past 30 years a broad technology has emerged
using man-made high-strength fibres in engineering
products. The trend started with the introduction of
glass fibres, and was followed by aramids, and more
recently by carbons. Restricted initial availability and high
cost meant that early applications were limited (o
‘strategic’ uses such as military and aerospace where high
strength and low weight transcended other considerations.

As fibre availability increased other specialized fields of
application have emerged. notably sporting goods, where
in some cases the composite product is now the norm.

Less spectacularly, but nevertheless of both technologi-
cal and commercial significance, high-strength fibres have
become established in the ficld of high-pressure gas
cylinder manufacture. As with other applications, fibres
have made initial commercial impact in those cylinder uses
where light weight is paramount, such as fire fighting and
emergency rescue. This has been followed in other weight-
sensitive products like portable medical cylinders and on-
board tanks for containing the high-pressure gaseous
‘alternative’ clean burn automotive fuels compressed
natural gas (CNG) and latterly hydrogen. While at the
present time economic factors impede the widespread
application of composite cylinders across the total range of
compressed gases — and notably in the field of industrial
gases — it seems certain that the growth trends observed
over the past several decades will continue.

Composite cylinders fall into two basic types, namely,
those which carry hoop-wrapped fibre reinforcement on
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the cylindrical body part only, and those which carry a full
hoop plus longitudinal body wrap including the cylinder
ends. Of the two types, hoop-wrapped is the simpler, and is
the subject of the following design theory.

The idea behind hoop-wrapping arises from the fact that
in a conventional metallic cylinder the average body hoop
stress 1s always twice that in the longitudinal direction.
Thus the hoop direction is structurally the weak link, and
will always be associated with a burst failure as caused by
over-pressurization. By reinforcing the hoop direction the
hoop/longitudinal stress ratio can be manipulated favour-
ably, resulting in increased pressure containment capabil-
ity. Furthermore, if the reinforcing medium is strong, stiff,
and lightweight in comparison to the metallic body, the
increased pressure capability will be accompanied by a
corresponding improvement in cylinder gas containment
to weight efficiency, which in the ideal condition could
approach 100 percent, although in practice with real
materials it will be less than this.

A feature of the hoop-wrapped cylinder is that over-
reinforcement leads to a change in bursting from a hoop
failure mode with longitudinal tearing of the body (as
always occurs in an unwrapped cylinder) to a longitudinal
failure mode with transverse fracture of the cross-section,
resulting in the cylinder’s separation and projection. This
latter failure mode is, on safety grounds, considered
unacceptable in most quarters. On the other hand, a
cylinder carrying insufficient reinforcement will not fully
exploit the potential gain offered by the hoop-wrapping
process. It follows that a critical understanding of the
factors influencing the change of burst mode is of
importance to the design and manufacture of hoop-
wrapped cylinders, and this aspect is a central part of the
following design theory.
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A further significant feature of hoop wrapping is that
pre-stressing can be readily employed to provide favour-
able load sharing conditions between the metallic cylinder
(or ‘liner’ as it is called) and the fibre/resin overwrap.
While not affecting ultimate bursting conditions, pre-
stressing can significantly improve cyclic fatigue perfor-
mance of the ‘liner’ by reducing tensile hoop stress in the
normal elastic operating range. A convenient method of
imparting pre-stress is by autofrettaging the wrapped
cylinder, involving deliberate over-pressurization into the
metallic liner’s plastic range during manufacture. A
quantitative understanding of the relationship between
autofrettaging pressure and resulting pre-stresses in liner
and fibre is important, and accordingly is comprehensively
treated in the following theory.

Although the hoop-wrapped cylinder is the simplest and
heaviest of the composites, it has and will continue to have
an important role in the compressed gas industry. It
represents a link between the traditional all-metal cylinder
and the avant-garde sophisticated fully wrapped types, in
that the ‘liner’ of the hoop-wrapped cylinder remains a
major load-bearing structural feature of the overall
cylinder design. While weight saving is less than with full
wrapping, it is nevertheless very significant compared with
what is possible by metallic pressure vessel materials
development. Furthermore, whatever may occur in the
latter can always be augmented by fibre hoop wrapping.
Other important techno-economic aspects of the hoop-
wrapped cylinder are:

e The geometry of the liner often remains within the
range of the all-metal equivalent cylinder. and there-
fore existing well-proven production plant and pro-
cesses can be utilized for liner production.
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e Fibre is expensive, and the hoop-wrapped cylinder uses
considerably less fibre than its fully wrapped counter-
parts.

e Because a higher proportion of the working pressure
load is carried by the liner, a hoop-wrapped cylinder is
arguably more damage tolerant than a fully wrapped
cylinder.

It is believed that the above points support the case for
improving the technological design basis of the hoop-
wrapped cylinder.



Present state of the art

As manufacturing techniques and markets for composite
cylinders have developed, a need has arisen for product
standards, first at national level, then at regional level, and
ultimately at international level. Examples of these.
respectively are: in the USA, Department of Transporta-
tion (DOT) (1) and in the UK. Healith and Safety
Executive (HSE) (2,3) specifications; EN European Stan-
dards (4) for reference in European Road/Rail Transport
Regulations (ADR/RID); and ISO Standards (5) for
reference in United Nations (UN) Transport Regulations.
The American Society of Mechanical Engineers (ASME)
has recently published a Code Casc covering design
requirements for large, transportable. hoop-wrapped
cylindrical pressure vessels (6).

Since composite cylinders are often used in the same
markets and for the same purpose as traditional all-metal
cylinders, standards for composites are intended to
provide the same overall level of safcty. and as far as
possible are written in a similar way - but with one
important exception, namely, the approach to cyvlinder
design. With metallic cylinders it has been the long-held
practice to provide in the standard a specific clausc on
design including stress formulac derived from well-
established materials theory. This approach is unambig-
uous, ensuring that the stress in the body of the cylinder
due to internal pressurization never exceeds a given sale
proportion of the material’s strength propertics under
normal operating conditions. However, with the greater
complexity of composite cylinders it has generally been
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judged too difficult to follow a similar track. Instead, the
concept of ‘performance-based’ design has been intro-
duced whereby the adequacy of a new cylinder is proven
by carefully selected tests intended to represent extremes of
service conditions.

Although this essentially experimental ‘performance-
based” approach to design leads to a safe composite
cylinder, it is inevitably resource consuming and costly in
the amount of testing required compared with prescriptive
design; while it may be the most suitable (indeed only)
course with an infant technology, there is a strong case. as
the technology develops, to graduate into predictive
design, thereby reducing the test burden and introducing
a common, transparent, approach available to all con-
cerned. It goes without saying that such a move requires
provision of accurate, reliable design theory.

Even in the present state of the art, where performance
testing is the norm, it is a fact that regulating bodies in
several prominent industrialized countries insist on a
design assessment by the composite cylinder manufacturer
as part of the Approval procedure. At present this
requirement is met by employing proprietary computer
programmes using numerical modelling techniques to
optimize prescribed concurrent conditions for a particular
cylinder, in the form of a design statement. The approach
falls short of revealing the relative influence of the design
variables as would be provided by a general theory, but is
probably useful in the absence of the latter, if only to
demonstrate that the manufacturer is applying more than
just experimental methods. However, some camps reject
the mathematical modelling approach to design as part of
Approval on the basis that calculation results cannot be
independently checked, and therefore add no value to the
performance testing already required.
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The foregoing makes a powerful argument for an
accurate theoretical approach (o composite cylinder
design — where/when such is possible. Work carried out
by the author, as documented in the following exposition.
shows that a comprehensive theoretical treatment of
design is possible in the case of the hoop-wrapped
cylinder, and it is believed that considerable benefits to
the compressed gases industry, in terms of safety. technical
optimization, and economies of manufacture. will result
from its application.

Although no broad theoretical design philosophy has
hitherto existed for hoop-wrapped composite cylinders,
design ‘tools’ in the form of optimization software
programmes have been developed. and are used privately
by manufacturers. The best known of the early versions
was that by NASA (7), licensed to several North American
cylinder makers. More recently a paper by rescarchers at
Alcoa (8) provides insight into the numerical optimization
approach as applied to a particular aluminium glass
design. It is claimed by the authors of the paper that the
developed mathematical model 1s an advance on NASA.
and from presented results the model appears to give
reasonable agreement with experimental data, cxcept in
the case of predicting the burst mode transition. The Alcoa
paper makes a significant contribution, not least for the
amount of experimental information contained, which. it is
acknowledged, has been used in comparing results
predicted by the following theory.
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Development of the theory

The following general points are made in setting the scene.

Compared with an all-metal cylinder, a composite
cylinder — even a relatively simple hoop-wrapped type -
presents a more complex design problem. Not only are
there more variables to be considered. but an under-
standing of the interaction between the liner and overwrap
1s crucial to the understanding of the cylinder’s overall
behaviour as a pressure vessel. The principal objective of
the following analyses is to provide engineers with a
comprehensive, philosophical framework for the design of
hoop-wrapped composite gas cylinders, taking account of
all important design variables and their interactions. The
approach followed throughout has been to link cause and
effect in the form of explicit mathematical [ormulae,
capable of solution by traditional methods without
recourse to computer numerical techniques, although the
user may choose to computerize parts of the procedure to
reduce the calculation burden. However. the rcal value of
the approach is in revealing the fundamental nature of
cause and effect, and the importance of this should not be
lost in the calculation process.

During normal use a hoop-wrapped composite gas
cylinder is designed to operate as an elastic body, such that
repeated pressurization and emptying produces no perma-
nent strain. However, a method often used to increase the
elastic range in service is to produce controlled plastic
overstrain in the liner during cylinder manufacture.
Furthermore, burst characteristics of the cylinder are
intimately associated with plastic deformation of the
liner. Without exaggeration, consideration of the plastic
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behaviour of the liner in the presence of elastic constraint
of the reinforcing overwrap has provided the essential
insight necessary for developing the following design theory.

Although the composite overwrap comprises two com-
ponents, i.c. fibre and resin matrix, the latter is of low tensile
modulus and strength compared with the entrapped
continuous fibres. For example, of the commonly used
fibres, 1.e. glass, aramid and carbon, glass with the lowest
modulus of the three is 30 times stiffer than epoxy resin, and
the strength of all of these fibres exceeds the resin by at least
40 times. Therefore, although the matrix positions the
continuous fibres to the hoop pressure load, it makes little
contribution to the structural strength of the cylinder, and
for that reason in developing the theory a simplifying
assumption has been made of a liner overwound only with
high-strength fibres of mechanical properties as measured in
the resin-impregnated, cured condition. This has the further
advantage that the theory is concerned only with the
amount of reinforcing fibre required, the mix of fibre/resin
volume actually used in manufacture being a separate non-
essential issue, and any slight theoretical error arising will be
on the conservative side.

1.1 Notation

a Area, generally

i Effective liner/overwrap interface hoop load area per
unit longitudinal length (= D)

e Effective internal hoop pressure load area per unit
longitudinal length (= d)

dr Total hoop cross-sectional area of fibre per unit

longitudinal length (i.e. both sides)
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Total critical hoop cross-sectional area of fibre per unit
longitudinal length (i.c. both sides)

Total design hoop cross-sectional area of fibre per unit
longitudinal length (i.e. both sides)

Total hoop cross-sectional area of liner wall per unit
longitudinal length (= 27 both sides)

Liner geometry coefficient ¢/D

Internal diameter of liner

External diameter of liner

Tensile modulus of fibre

Tensile modulus of liner

Fibre stress ratio (as defined in Scction 1.6.3)

Liner geometry coefficient /(D — d*)

General suffix denoting longitudinal direction (e.g. of
stress)

Cylinder burst coefficient (as defined in Scctions 1.4 and
1.5)

Cylinder burst coefficient (as defined in Sections 1.4 and
1.5)

Pressure, generally

Autofrettage pressure

Burst pressurc

Critical burst pressurc

Design burst pressure

Liner burst pressure (without overwrap)

Required minimum burst pressurce

Design pressure associated with FSR

Hydrostatic test pressure

Liner/overwrap interface pressure

Service pressure

Initial yield pressure of hoop-wrapped liner

General suffix denoting radial direction (e.g. of stress)
Wall thickness of liner cylindrical body

Tensile strength of resin-impregnated fibre strand
Tensile strength of liner

Fibre stress coefficient (as defined in Section 1.6.3)
Current yield stress of liner
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Mean liner yield stress over a specified strain increment
Initial yield stress of liner prior to autofrettage

Liner hoop stress coefficient (as defined in Sections 1.6.1
and 1.6.2)

General prefix denoting an increment (e.g. of strain)
Diametrical permanent expansion in autofrettage
Strain, generally

Equivalent strain in liner

Strain in fibre

Longitudinal strain in liner

Hoop strain in liner

General suffix denoting hoop direction (e.g. of stress)
Poisson’s ratio

Stress, generally

von Mises equivalent stress in liner

Fibre stress

Fibre design stress associated with FSR

Fibre pre-stress after autofrettage

Longitudinal stress in liner

Denotes a mean principal stress in liner over a spccificd
strain increment

Mean radial stress in liner wall

Hoop stress in liner

Liner hoop pre-stress after autofrettage

Denotes a deviatoric stress in liner

Characterization of cylinder behaviour
under pressure

Figure 1.1a shows a cross-section of a typical hoop-
wrapped gas cylinder, including an inset three-dimensional
segment of the cylinder wall. Figure 1.1b is an enlarged
view of the segment showing liner principal stresses oy. oy,
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and o, and fibre stress oy. Generally o and aq will be large
compared with internal pressure p and mean wall radial
stress oy, and therefore the liner approaches a condition of
plane stress. However, as will be shown later, this does not
a priori justify the blanket assumption of plane stress for
all combinations of liner and fibre, but it does provide a
useful analogy for visualizing stress patterns in the liner
(and by implication in the fibre) at various stages of
pressurization as shown below.

For plane stress (with o, =0) the von Mises yield
criterion reduces to

2 2 2
Y =05 +o0f —0p-0

which plots as an elliptical locus in the principal stress
plane. Figure 1.1c shows this locus in the positive stress
quadrant typical of a pressurized cylinder. Any point on
the locus represents a oy. oy condition causing yielding at
yield stress Y, whereas all o), 0y points within the locus
represent an elastic state.

Consider first the representation of an unwrapped (all-
metal) cylinder on this stress field. Hoop stress oy is twice
longitudinal stress o) throughout the total pressure range
up to burst. Therefore the oj/oy stress ratio plots as a
straight line of gradient 4 from the zero stress origin 0 to
intersect the yield locus at point | where plastic deforma-
tion commences and continues at the same fixed stress
ratio. Showing the yield locus as a single line 1s
representative of a non-strain-hardening cylinder, or initial
yielding of a strain-hardening cylinder. In the former case
the cylinder would reach instability and burst at a pressure
corresponding to point 1. In the latter case the yield locus
would be represented by a band or zone, notionally
bounded by the indicated dotted locus. through which the
stress ratio line continues to the point of instability 1’
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overwrap
liner — T @,_——-
— * t
[——— d S
D
(b) Cylinder segment with
u triaxial stress
a) Cylinder section
o A Expansion of yield locus
(=K.p) 5 by strain hardening
) <
5 5 :
3
A Y L
e 2 iy
L 1" Unwrapped
ol ] *—_ cylinder
e 1 < von Mises yield locus
A4 2 ) /"~ in-plane stress
., [}
-Gy e—le” Y 2
Goo 0 /' ;

(c) Pressurization of liner in-plane stress

Fig. 1.1 Hoop-wrapped cylinder under internal pressure using
plane stress analogy for visualizing liner yielding
process
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where o1, 0y and internal pressure p would all excced those
at point 1. Internal pressure at any stage along line O 1 is
found by putting point values of either oy or oy in the
appropriate stress—pressure formula.

Consider now the hoop-wrapped cylinder in a manu-
factured state prior to autofrcttage, i.e. with both
principal stresses zeroed on origin 0. It is noteworthy
that there is direct proportionality between longitudinal
stress o] and pressure p at all pressures up to burst,
because fibre reinforcement applies in the hoop direction
only. The effect of the wrap is to stiffen the liner against
hoop expansion, and therefore during the initial pressur-
ization for any value of oy (i.e. of p). oy will be less than
that for the unwrapped cylinder. In other words, in the
elastic phase the gradient of the stress ratio line will be
greater for the wrapped cylinder. intersecting the yicld
locus at point 2 where plastic deformation commences.
However, unlike the non-strain-hardening unwrapped
cylinder, the reinforcement will prevent imminent hoop
bursting of the liner, and pressurization will continue.
leading to a situation of rising pressure and, therefore,
rising longitudinal stress, together with plastic deforma-
tion. Such a state can only be reconciled by an
anticlockwise rotation of the stress point gy, oy along the
yield locus, say to some point 3. during which interval
hoop stress is reducing. If the cylinder is now
depressurized, liner elastic recovery will take place from
point 3 along a line parallel to line 0 2, resulting in a
compressive hoop stress oy at zero pressure as depicted
by point 4. The load/unload cycle represented by
0—-2—3—4 is recognized as autofrettage (this is
discussed later in this section). Re-pressurization from
point 4 causes stress increase along line 4 — 3 with yield
reoccurring at point 3. Further pressurization results in
continuance of the anticlockwise stress path along the



10 Hoop-wrapped, composite, internally pressurized cylinders

yield locus until one of two possible events occur as
follows:

If the amount of fibre overwrap is excessive, travel
along the locus will proceed to point 5, which
represents maximum sustainable longitudinal stress
Olmax fOr a non-strain-hardening liner. Since oy is
directly linked to internal pressure p, this point on
the locus also represents maximum sustainable pressure
Pmax for the composite cylinder, and the cylinder will
thus burst in a longitudinal mode. This same general
conclusion is reached for a ‘normal’ strain-hardening
liner, because the effect of plastic strain in increasing
yield strength will be progressive from initial yielding at
point 2, and therefore the ojn. point (say 51
approached asymptotically. The only difference will
be an increased pmax resulting from expansion of the
von Mises envelope.

If, on the other hand, the amount of fibre overwrap is
sufficiently less than in the above case, pressurization
above point 3, coupled with the already noted decrease
in liner hoop stress contribution, will bring the fibre to
its maximum tensile strength 7¢ and bursting of the
cylinder will thus occur by hoop mode at some point 6
where 01 < Olmax and P < Pmax-

It follows from the two preceding studies that there 1s
in theory a critical amount of fibre overwrap for any
given liner that will cause bursting on a precise
boundary separating hoop and longitudinal burst
modes. Since the longitudinal burst mode is generally
held unacceptable on safety grounds, definition of this
critical changeover point in terms of the design variables
is of fundamental importance, and accordingly receives
considerable attention in the following development of
the design theory.
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However, by way of caution, it i1$ important to note
that the above theoretical conclusions are drawn purely
on stress considerations of liner and fibre in the liner’s
plastic deformation phase. For both critical burst at p,,.«
and hoop mode burst at p < pp. there is the underlying
implicit assumption that maximum fibre strain s
developed in the process before unstable plastic strain
develops in, and causes failure of, the liner. Clearly this
situation cannot be generally true for all possible
combinations of liner/fibre materials, because, for
example, a high-strength fibre of elastic modulus
significantly lower than that of the liner could have
fracture strain greater than the instability strain ot the
liner, and then the theory would not apply. It is
therefore important to check and confirm that the latter
condition does not arisc before applying this theory.
although it is known that with commonly used liner
fibre material combinations the theoretical assumption
is valid.

Figure 1.2 illustrates the three burst conditions described
above, including representation of fibre stress. Figure 1.2a
depicts a typical acceptable hoop burst where maximum
fibre stress 77 1s attained at a pressure corresponding to
0] < omax- Flgure 1.2b depicts an unacceptable long-
itudinal burst where maximum longitudinal stress o,
and maximum pressure pm. have been reached before
maximum fibre stress due to excessive fibre. Figure 1.2¢
Ulustrates the important theoretical boundary condition
where maximum liner longitudinal stress (and pressure) are
reached simultaneously with development ol maximum
fibre stress.

Figure 1.3 shows the autofrettage process superimposed
on the plane stress field, amplifying the previously
introduced insight. Both liner and fibre loading unioading
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A Cimax / GI < Gimax

fibre

liner

T

0 g and o

(a) Acceptable hoop burst mode initiated by fibre failure, a; < ag

fibre

liner,

o< T¢ |

0 Gy ana fer3
(b) Unacceptable longitudinal burst mode due to excessive fibre overwrap, a; > as

fibre

liner

T

0 G(,;?i o
(c) The critical condition — longitudinal liner burst simultaneous with fibre failure, a; = ay.

—

Fig. 1.2 Plane stress analogy of burst modes for hoop-
wrapped cylinders

characteristics are linear when the liner is in the elastic
range. However during the liner’s plastic deformation
phase between initial yield and the autofrettage
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o and p von Mises yield locus
1 Yo = (7\)2 + 5\2 - GuO)
Ilne-r\A
“00 < / / » Oaand of
COgo 0 Ofo

Fig. 1.3 Plane stress analogy of the autofrettage process

conditioning point, both liner and fibre exhibit non-linear
stress versus pressure trends, even though the fibre remains
linear elastic throughout; this is because the fibre is
providing increasing proportional contribution to pressure
load sharing as liner hoop stress reduces around the von
Mises locus. A noteworthy feature of the autofrettage
process, readily appreciated from Fig. 1.3, is that after re-
pressurization to yield at the conditioning point. further
pressurization causes resumption of plastic straining of the
liner and elastic straining of the fibre just as though
autofrettage had never taken place. It follows that
autofrettage has no effect on subsequent cylinder bursting.

1.3 Prediction of the critical burst mode
boundary cylinder design

The simplest approach is to assume a plane stress
condition for the liner, as per the visualization in Section
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1.2, but such an assumption is justified only if the radial
through-wall stress is negligible compared with hoop and
longitudinal stresses. It is shown in Section 1.3.2 that mean
radial stress lies (numerically) between p/2 and p. There-
fore the assumption will be least in error when internal
pressure is small compared with yield stress. Given that
service pressures are set by use considerations, this implies
least error with higher yield stress liners. A typical alloy
steel liner would have yield stress of around 800 MPa. and
a composite cylinder based on such a liner would, for a
service pressure of 200 bar, have a burst pressure of at least
500 bar. Therefore the internal pressure/yield stress ratio at
burst would be of the order 50/800 or ~6 percent, an
amount which could not be taken as negligible. If a Series 6
aluminium alloy liner (as frequently used in hoop-wrapped
composites) is considered with typical yield stress of
300 MPa at the same above pressures, the ratio becomes
50/300 or ~17 percent, a significant amount, especially as
200 bar is by no means a high service pressure by modern
standards. The effect of radial compressive stress in the
von Mises criterion is to reduce values of hoop and
longitudinal stress at which yielding occurs, in other words
effectively to weaken the liner. Therefore, to ignore a
significant radial stress is to overestimate cylinder perfor-
mance — an untenable design position, and although the
error would be graver in some cases than others, as
indicated above, a comprehensive theory should accom-
modate all potential cases.

Following from the above, the need to include radial
stress in critical burst theory was recognized at an early
stage. However, it remained convenient in developing the
theory to start simple and subsequently build in refine-
ment. In the interests of presentation the same procedure is
repeated below.
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1.3.1 Burst boundary evaluation for the plane
stress condition

Ignoring radial stress, the von Mises yield criterion
appears as in Section 1.2

Y2 :o‘g—f—(flz—ﬁ()-o*]
Differentiating
2Y-dY = 2(o0p - doy + 01 -doy) — o7 - doy — oy - doy

At maximum pressure doj = 0, and since yield stress 1s
considered constant dY = 0. It follows that at maximum
pressure oy = oy/2.

Substituting for oy in von Mises, gives for the critical
burst condition

o1=Q2/J/3)Y o= (1/J3)Y

(The stress ratios o1, 09 = 01/2,0, =0 represent plane
strain with gy = 0.)

Since oy is given generally by pd?/(D> — d?), the critical
burst pressure is

_2Y(D* —d?)
and total fibre cross-sectional area ag. at critical burst pp 18
given by the hoop equilibrium equation, putting
P = Pve, ot = Ty, and oy = (1/4/3)Y, thus
Dhe * dep —ﬁ Y- a
Ty

dfe =

The above analysis, though overly simplified for practical
application, demonstrates how an understanding of the
plastic behaviour of the liner leads directly to a prediction
of the critical burst pressure. According to the analysis, a
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liner of proportions D, d, ¢ with a non-strain-hardening
yield stress Y, will have a critical burst pressure pp., and
the amount of fibre of strength T} to just cause fibre failure
at this pressure has cross-sectional area ag /2 on each side.

Radial wall stress is introduced to the theory in the next
stage of development.

1.3.2 A first approximation to burst boundary with a
triaxial stress state

For triaxial liner stress the von Mises yield criterion 1s
2 2 2 2
2Y*" = (09 — 1) + (01 — 0r)” + (0r — 06)

The same analytical procedure is followed as in Section
1.3.1 except that it is assumed that o, is a function of
internal pressure p only, and therefore at critical liner burst
pressure p,. not only are dY and doj equal to zero, but also
do, is zero. This leads to the result that at pressure pyc,

oo = 3 (01 + 0y).

Substituting this value into the yield criterion gives at
Poe

2
Olmax = (75) Y+ Oy

and corresponding

o= (5)r e

Since o, is compressive and, therefore, according to
convention negative, oimax and connected critical burst
pressure ppe will be less than given by the plane stress
theory of Section 1.3.1.
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The problem with applying this version of the theory is
that mean radial stress o, is unknown and can only be
surmised to lie somewhere between o, = —p/2. i.e. that for
an unwrapped cylinder, and o, = —p, as would result from
total hoop reinforcement. The next, final, stage of critical
burst theory development includes a more fundamental
treatment of radial stress.

1.3.3 Rigorous theory of the critical burst boundary
condition

1.3.3.1 Radial stress

A complete expression for mean radial liner stress is pro-
vided by considering the forces acting on a half-hoop sec-
tion of the composite cylinder, analysing equilibrium of the
two components together and separately. Figure 1.4a
shows the combined cross-section where hoop load
generated by internal pressure p acting on cross-section
aeq 1s reacted by the combined force of fibre stress oy acting
on area ap and liner hoop stress og acting on area ag. Thus
for the composite cylinder, hoop equilibrium is given at all
pressures by

p-ae =0r-ar+0oy-dap

Figure 1.4b shows equilibrium of the fibre overwrap as a
separate element, where pressure p; developed at the liner/
fibre interface area ag is reacted by fibre stress oy acting on
area ar. Thus for equilibrium

Pidci = Of - drp

Figure 1.4¢ shows equilibrium of the liner as a separate
element with internal pressure p acting on the effective
internal area ac and external pressure p; arising tfrom
fibre constraint acting on the effective interface area .
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a2

! ; -
G;I oo ey cel Sf  (a) Composite cylinder

af/ 2

cr; ag ;of (b) Fibre overwrap

l T 8oy Gol (c) Metal liner

Fig. 1.4 Hoop equilibrium of cylinder and component parts
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For equilibrium

P Ay — pi-dei = 0g -
and thus

pi=(p-ae — oy - dp)/ i

Now radial stress at the liner inner surface is —p. and
radial stress at the interface is —p;. Therefore mean radial
through-wall stress o, = —(p + pi)/2. Substituting for p;
and rearranging gives

or =3 (ap/a) - 0y — 5 (1 + ac/as) - p
where

ag = 2t/unit length
aep = d/unit length
ae; = D/unit length

The term %(ae/aci) therefore reduces to ¢/D, and the term
%(1 +aep/ac) to (1 —1/D).

Letting design constant /D = A, the above cxpression
for o, reduces to

or=A-gg— (1l —A4)-p (1.1)

Thus mean radial liner stress is seen to be a function of
both internal pressure and hoop stress, which theoretically
invalidates the simplifying assumption made in the earlier
treatment of Section 1.3.2.

1.3.3.2 Development of the theory

Although o, from equation (l.1) could be used in
expressions for o), and oy derived in Section 1.3.2 to
provide a result for critical burst pressure ppc, this
approach is not strictly correct because o, should be
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treated as variable in both p and oy in the derivation, as
shown below.,

The triaxial von Mises yield criterion introduced 1n
Section 1.3.2 can be expanded to

N
Y“:o§+alz+(7r2—ae-al—Ul-ar—ar-oe (1.2)

Differentiating, and noting that dY =0 for constant
current yield stress, and doy =0 at maximum pressure,
the critical boundary condition is expressed by

0 = dog(20¢ — 01 — ;) + dov (20, — 01 — ) (1.3)

A link between dog and do;, is given by differentiating
equation (1.1), and putting dp = 0 at critical burst

doy = A - dog (1.4)

Combining equations (1.3) and (1.4) gives a relationship
between the principal stresses at the critical boundary,
thus

2—A)oy = — Ao — (24 — )o, (1.5)

Equations (1.1), (1.2), and (1.5) are three relationships
between the three unknown principal stresses oy, 07, and
o, at the critical burst boundary, and hence in combina-
tion they provide the means of defining the pressure and
associated stresses at that important condition. The
method of derivation followed, which seems to offer
least mathematical resistance, is to first substitute og from
equation (1.5) into von Mises equation (1.2), providing a
relationship between o1,0,, and Y. The structure of
equation (1.2) makes the procedure cumbersome, but
the outcome is an expression for critical longitudinal



Development of the theory 21

stress, thus

Y 24 L6
O‘lmax-‘\7§|:\/(A2_A+l):|+(7r ()

Corresponding hoop stress at the critical boundary is
obtained by substituting o) from equation (1.6) in equation

(1.5)

Y 1+ 4 .
““%-J(ALAHJ““ -

The route is now clear for establishing critical boundary

burst pressure py., because combining equation (1.7) with

equation (1.1) to eliminate oy gives an expression for o, in

terms of pyc, which is then used in equation (1.6), writing

Olmax 1N terms of pp. and area parameter K. as follows:
From equations (1.7) and (1.1)

l[ A(l + A)
S0 = A)JA2— A+ 1)}

Substituting for o, in equation (1.6), putling
Olmax = K‘pbc, gives

2Y[\/(AA A+ 1)}

Oy = — Pbe (18)

P =73 [(K+ (T = 4)
and noting that (K+ 1) = 1/[4A4(1 — A4)]
8Y ,
pbc—\/3 AJ(A= = A+ 1) (1.9)

Having derived critical burst pressure py., closed-form
expressions for o, from equation (1.8), oy from equation
(1.7), and o7 from equation (1.6) all follow. These are
included in Annex 1 in two forms. The first form gives
oy, 01, and o, in terms of the basic parameters 4 and Y.
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The second form, which provides simpler expressions,
incorporates additionally py., as the latter will usually be
evaluated before solving for principal stresses. However, it
is noted that probably the easiest way to establish the burst
boundary condition is to ignore these closed expressions
and instead apply the theory in a stepwise manner, first
deducing pp. from equation (1.9), then deducing oymax
directly from K- py., then deducing o, from equation (1.6),
and then deducing oy from equation (1.7). This and other
aspects of applying the theory to cylinder design are
covered in Part 2.

Although in the preceding development critical bound-
ary pressure py. is derived in terms of liner wall thickness/
diameter ratio A, in practice the cylinder designer is more
likely to be faced with evaluating A for a prescribed value
of pye, and then equation (1.9) must be solved instead for
A, which is less straightforward. A simple numerical
approach is generally best, noting to start with that since A4
is small the term /(4> — A4 + 1) is just less than unity, and
therefore a first approximation to A4 1is given by
Ao = /3 pre/(8Y). By substituting this value as 4 in
AJ(A*> —A+1) and comparing the result with
V3 pee/(8Y), A is increased by the difference, in steps,
until 4/(4> — A+ 1) = /3 - pre/(8Y). [An alternative less
precise approach is to note that for small 4, the term
J(A? — A+ 1) approximates /(1 — 4), which can be
further approximated from binomial expansion by
(1 — A/2). Thus replacing A/(4> — A+ 1) by A(1 — A4/2)
reduces equation (1.9) to a quadratic in A4.]

Table 1.1 compares critical boundary burst pressures
from the rigorous theory with those from the simple ‘plane
stress’ theory of Section 1.3.1. It is seen that over a t/D
range from 0 to 0.060 (which encompasses most hoop-
wrapped cylinders) the error of the simple theory ranges
from 0 to almost 25 percent overestimate. Typical alloy
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Table 1.1 Comparison of critical burst pressure from plane
stress and triaxial stress theories and principal
stress ratios from triaxial theory

Triaxial stress theory

Critical burst
Thickness/  pressure ratio: plane
diameter ratio stress theory/triaxial

=1{/D stress theory oo/Y o)Y o )Y  ou/o
0 1.000 0.577 1.155 0 0.500
0.010 1.036 0.546 1.115 —0.040 0.490
0.020 1.074 0.515 1.075 —0.079 0.479
0.030 1.114 0.486 1.037 —0.118 0.469
0.040 1.156 0.457 0.999 —0.156 0.457
0.050 1.202 0.428 0.961 —0.193 0.445
0.060 1.245 0.401 0.924 —0.229 0.434
2Y 2V [ 44 - A)
Plane stress p,. = \/KK \/ [ Sy 4)}
.. Plane stress p, 1 — A4
Ratio: Triaxial stress p,. [ 1441 — AN/l — A4+ A3):,

steel liners would have ¢/D ranging approximately from
0.015 to 0.022, depending on service pressure, with
associated 5-8 percent overestimate, typical 6000 Series
aluminium alloy liners would have //D ranging around
0.040 to 0.060, with an associated 15-24 percent over-
estimate. These data clearly justify the need for the
rigorous triaxial stress theory.

Table 1.1 also shows how principal stresses oy, oy, and o,
associated with critical burst pressure p,. vary with ¢t/D
according to the rigorous theory for any given current
yield stress Y. Importantly, it is noted that liner hoop stress
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og at critical burst is generally less than one-half of
longitudinal stress o7, with implications for fibre reinforce-
ment discussed later.

Knowledge of liner hoop stress og at critical burst
pressure ppe, as provided by equation (1.7), enables
calculation of critical fibre area ag. required to induce
boundary failure, thus

Pbe ~ dcty — 0p - Uy

. 1.10
ar T (1.10)

If ar < ag., bursting will occur by hoop mode, and 1f
ar > ar., bursting will be by longitudinal (separation)
mode. Special note is maue that oy in equation (1.10) is a
particular value of liner hoop stress given uniquely by
equation (1.7).

Note

Implicit in equation (1.10) is the assumption that full fibre
strain to fracture is developed before plastic instability
strain in the liner occurs. Unless this condition is already
known to be true for the liner/fibre materials of the design, it
should be checked using the procedure given in Section 1.9.

1.3.4 Effect of strain-hardening on liner yield
strength at the critical boundary

Throughout Section 1.3, and particularly in Section 1.3.3,
equations (1.2) to (1.9), Y is the liner’s current yield stress
at the point of critical burst, and therefore is greater than
the initial yield stress of the liner as manufactured because
of strain-hardening undergone in the plastic deformation
phase. The need to ascribe a realistic value of Y is clear
since it directly affects the numerical value of calculated
stresses and pressures, not only at critical burst but also in
other aspects of cylinder design theory described below.
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General analysis for evaluating current yield stress at burst
with strain-hardening is included in Section 1.9.

1.4 General hoop burst theory

From equation (1.10) it follows that for a liner of area ay,
hoop bursting will occur for all values of fibre area «y less
than ag.. This range is notionally represented by points 1 to
5in Fig. 1.1c, where point 1 is the unwrapped cylinder with
ar = 0, and advance around the von Mises locus represents
increasing fibre area and corresponding increasing burst
pressure, from that of the unwrapped liner p, to the
critical burst py.. (Theory for burst pressure of the
unwrapped liner is developed in Annex 2.)

For any given pressure p,, where py < pp < ppe, and
liner wall area «g, longitudinal stress is known. being
given by o3 = K- p,, hoop stress oy is unknown, and
radial stress o;, given by equation (1.1), can be written
in terms of oy and p,. Thus the only unknown in the
von Mises yield criterion is oy. Substituting o =
K- py,00 = A4 00— (1 — A)py, In equation (1.2) leads to
the quadratic

ag—m-ae—i—n:O

and hence
m 5
GQ:E[I—I—\/(I —411/}77“)] (1.11)

where

KU+ A) = (1= A)(1 = 24)
m_’"’[ A+ A ]
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and

”_p%[Kz-i-(l — Ay +(1 - AHK] - ¥
N 1 - A+ 42

In equation (1.11) the positive root only has been taken,
since this represents the stress condition of interest on the
von Mises yield locus. Two noteworthy special cases of
equation (1.11) arise. Firstly, when the term
4n/m* = 1,09 = m/2 irrespective of the root sign, i.e.
there 1s a single value for oy, and this in fact corresponds to
the critical burst condition, representing the limit of the
general hoop burst theory. No real values exist for og when
4n/m* > 1. Secondly, when n =0, equation (1.11) gives
oo = m. However, the corresponding negative root of
equation (1.11) gives oy = 0. Therefore the particular value
of og = m given by equation (1.11) when » = 0, should be
given no greater significance than this as far as prediction
of the theory is concerned.

Knowing hoop stress og at py from equation (1.11),
consideration of hoop equilibrium provides the fibre arca
ap, necessary to cause hoop burst at py, i.e.

_Pvdeg —0Op -y
T

Ay (1.12)
Radial stress o, follows from equation (1.1) and therefore
all three principal stresses in the liner at py, are known.

Note 1

Implicit in equation (1.12) and in this theory in general, is
the assumption that full fibre strain to fracture is
developed before plastic instability strain in the liner
occurs. Unless this condition is already known to be true
for the liner/fibre materials of the design, it should be
checked using the procedure in Section 1.9.
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Note 2

Although the stress theory developed in this section is
concerned with the hoop burst situation, the underlying
concepts are not limited to this situation, and can be
applied in the broader context of cylinder behaviour when
the liner is in a plastic state. This follows because providing
that the cylinder’s burst pressure py, is less than the critical
burst pressure pp., bursting under the postulated condi-
tions can only result from fibre failure, causing in turn.
pressure overload of the liner. At pressures less than py.
providing that the fibre remains intact, the liner will bc in a
stable plastic state with principal stresses satisfying the von
Mises yield criterion. Thus equation (1.11) may be used
generally to derive hoop stress oy at any pressure p, where
Pyo < p < pp. Likewise, equation (1.12) may be used to
obtain the fibre area «; versus fibre stress oy relationship at
that pressure and hoop stress, within the confines of
or < Ty, ar < ag. A particular example of such an applica-
tion is the case of autofrettage.

1.4.1 Effect of strain-hardening on hoop burst
pressure

The importance of using a realistic value of current yield
stress Y in equation (1.11) is self-evident, and Y depends
on the amount of strain-hardening from initial yielding to
failure. Over the range of failure represented by
Dol < Pb < Pne the nature of liner straining changes
significantly. Bursting of the unwrapped and lightly
wrapped liner is mainly characterized by hoop straining,
longitudinal strain being low because of the ncar plane
strain condition. However bursting at critical pressure pp.
involves a varying range of straining modes culminating at
the point of bursting with high-longitudinal and low-hoop
strain increments. While it is clear that, in general, hoop
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bursting involves hoop strain equal to maximum fibre
tensile strain (a quantity readily established), the accom-
panying longitudinal strain will increase progressively
around the yield locus as pp increases towards py..
Hence it is to be expected that equivalent strain and
current yield stress Y will increase commensurately. With
the relatively high yield/tensile materials used for gas
cylinder liners, the potential for error in this area is
reduced but is still significant. Section 1.9 provides
quantitative analysis on the subject.

1.5 Design burst optimization

There are two elements to be considered: firstly deciding a
cylinder design burst pressure in relation to the critical burst
pressure pne, and secondly establishing the fibre reinforce-
ment necessary to cause bursting at the decided design burst
pressure. Since the design burst mode will always be hoop,
design burst is a particular case of and fully defined by the
general hoop burst theory of Section 1.4.

1.5.1 Cylinder design burst pressure

The starting point will often be a minimum burst pressure
required by specification and/or regulation, typically in the
form of an arbitrary multiple of the service or hydrostatic
test pressure. Such a requirement, when it exists, sets an
absolute minimum burst pressure for the cylinder. Let this
pressure be pp,. Because theory cannot provide total
accuracy, and manufacture cannot provide total process
control, design burst pressure would normally be set with a
margin above py,, otherwise there is a risk that the design
will not always achieve py; on test. Thus, if design burst
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pressure is pyg, then ppg > pp,. Finally, to ensure that the
cylinder bursts in hoop mode there is a condition that ppg
is less than critical burst pressure pn.. Hence the general
condition pp; < ppd < Pre Can be wrilten, with separating
margins dependent on design/manufacturing confidence.
For equal margin between required and critical conditions
Pod = (Por + Poc)/2.

1.5.2 Design burst theory

Having decided ppq and pp, relative to minimum burst py,.
equation (1.9) is applied to establish the liner wall
thickness necessary to achieve pp. at the given diameter.
This sets the 1/D(= A4) value, ensuring longitudinal
bursting will not occur at pyq.

The general theory developed in Section 1.4 1s applied.
substituting pyg for py. thus

0*0:?21[1—1—\/(1 —417//712)] (1.11a)
where
K(14+A4)— (1 —A)1 —=2A4)
1 = Phd 1 — A+ A2
and

y PR (= AP (1 = K] = v
o 1 — A+ A2

Knowing hoop stress oy at ppq from equation (l.11a),
consideration of hoop equilibrium provides the fibre area
agqg necessary to cause hoop burst at pyg. 1.€.

Pod * dey — O - dy

dard T ( 1)
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Radial stress o, follows from equation (1.1) and therefore
all three principal stresses in the liner at ppq are known.
It is observed that the proportional increase in fibre area
from agy at design burst to ag. at critical burst [equation
(1.10)], significantly exceeds the corresponding propor-
tional increase in burst pressure achieved from ppg to pr.
reflecting the decreasing contribution of the liner hoop
stress to the hoop load, as can be appreciated from Fig. 1.2.

Note

Implicit in equation (1.12a) is the assumption that full fibre
strain to fracture is developed before plastic instability
strain in the liner occurs. Unless this condition is already
known to be true for the liner/fibre materials of the design,
it should be checked using the procedure in Section 1.9.

1.5.3 Effect of strain-hardening on yield strength at
design burst

In practical terms the design burst pressure will usually be
sufficiently close to the critical burst pressure to give
plastic straining and current yield stress approaching that
in the latter. Section 1.9 provides quantitative analysis.

1.6 Linear elastic stress theory

The cylinder will normally operate in the elastic state
throughout its working life and elastic operating stress
levels are important and must be quantified. However, it is
noteworthy that the main elements of the cylinder design
have already been set by preceding burst considerations
based on plastic state analysis, namely: the critical burst
theory of Section 1.3.3 provided liner wall thickness, and



Development of the theory 31

the design burst theory of Section 1.5.2 provided [ibre area.
(These elements could subsequently be revised upwards 1f
resulting elastic stresses are too high to achicve the
required number of fatigue cycles.) Furthermore. as will
later be seen, the distribution of elastic stress between liner
and fibre, though defined by elastic safety factor require-
ments, is actually imparted by controlled plastic deforma-
tion of the liner.

In the interests of accuracy and compatibility of stress
across the elastic/plastic interface, the general statc of
triaxial stress used in burst theory is retained for clastic
analysis.

Manufacture and use of a hoop-wrapped cylinder
involves two separate elastic stress states. The first
concerns loading the cylinder from zero stress up to initial
yield as part of the manufacturing autofrettage process.
The second concerns the general state of stress during
normal use after autofrettage. Both states are analysed in
the following sub-sections.

The elastic stress state in liner and fibre at any given
pressure can be derived by the application of two
simultaneous conditions:

(a) equilibrium of hoop forces.
(b) equality of hoop strain increment in liner and fibre.

1.6.1 Elastic stress prior to autofrettage

Figure 1.5a shows liner hoop stress oy versus pressurc p.
For any applied pressure p(0 < p < py). consideration of
hoop equilibrium gives

_Prdep— 00 dy
ar

ot (1.13)
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Since straining is from the zero stress/strain origin,
equality of hoop strain provides a further relationship
between fibre stress o and liner hoop stress oy

o = %[06 ~ oy + ) (1.14)

where oy = K- p, and 0, =4 -0y — (1 — A) - p from equa-
tion (1.1).

Substituting for o and o, in equation (1.14), and
equating with equation (1.13) leads to a general expression
for liner hoop stress oy in terms of p and cylinder constants

(aco/ar) + (Er/EDv(K — 1 + A)}
(Er/EN(1 = vA) + (ap/ar)

The bracket {} is a coefficient defining the gradient of the
og ~ p line. Let this {coefficient} be Z, then

oo =2-p (1.15)

Longitudinal stress oy = K - p is known, and o, is available
by combining equations (1.15) and (1.1). Therefore all liner
principal stresses are known in terms of pressure p, and
corresponding fibre stress oy is obtained by combining
equations (1.15) and (1.13).

1.6.2 Elastic state after autofrettage

Figure 1.5b shows the post-autofrettage elastic recovery
line 3 — 4 of Fig. 1.1c added to Fig. 1.5a. All subsequent
elastic relationship between hoop stress and pressure,
loading and unloading, will be along this line. At zero
pressure there will be a residual compressive stress in the
liner ogy, and a corresponding residual tensile stress in the
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Fig. 1.5 Hoop and fibre stress versus pressure in the elastic
range
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fibre opy. Because the stress line does not pass through the
og—p origin, it is necessary to develop the oy versus p
relationship in terms of a ‘design pressure’ py at which
‘design stresses’ ogq, 014, 0rd, and ofy are nominated. The
“design pressure’ could be any pressure between 0 and Pyo
for the purpose of this theory, although it will be shown
later that the imposition of a fibre stress ratio (FSR) as
required in composite cylinder standards, effectively fixes
pa and all associated design stresses. The development of
the op—p relationship proceeds as follows.

For any applied pressure p, consideration of hoop
equilibrium again results in equation (1.13). Applying the
strain equality condition over the strain increment
corresponding to pressure py — p results in

Er

of = E[(Oe — {01+ 0v)) = (opd — v{o1g + 01a))] + 074

and substituting oy = K-p,0, = 4 -09 — (1 — A)p

or = %[(m;(l — vA> — vp(K — 1+ A>)

~(o0a(l = vA) — vpa(K — 1 + A))] + o1 (1.16)

Equating equations (1.13) and (1.16) to eliminate oy, leads
to a general expression for hoop stress oy in terms of
pressure p, the cylinder constants, and the designated
design pressure/stresses

P ){(ace/af) + (Ef/EDv(K — 1 + A)}
(Ev/E)(1 —vA) + (ag/ar)

N [(Ef/El)(GedU —vA) —vpg(K— 1+ A4)) — de]
(Ee/EN(1 —vA) + (ag/ar)
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Although this expression appears at first sight unwicldy:.
there is a basic underlying simplicity. By comparison with
the pre-autofrettage expression (1.15) it is clear that the
coefficient of p in the {} bracket is in fact Z. proving that
the gradient of the hoop stress—pressure line is unchanged
by autofrettage. Furthermore, the term in the [ | bracket is
observed to be constant for any given design pressure for
all values of variable pressure p. Thus, putting p =0
reveals that bracket [ ] is in fact the value of liner pre-stress.
i.e. [ | = og9. The above gencral expression for hoop stress
after autofrettage can therefore be written

o9 =2 -p—+ o (1.17)
where

_ {(aCG/ai‘) + (Er/E(K — 1 + A)}

(Ee/EN(1 —vA) + (ap/ay)

and

B l:(Ef/El)(UOd“ —vA) —vpg(K— 1 + A)) — (Tm]
‘- (Ec/ENL = vA) + (ag/ar)

Fibre stress at p is given by substituting for oy from
equation (1.17) into equation (1.13). longitudinal and
radial stresses being evaluated as previously. However. the
following Section 1.6.3 indicates an alternative. simpler.
route to solution by considering fibre stress first.

1.6.3 Design pressure and associated stresses

While Section 1.6.2 shows stress analysis approached via
liner considerations, it has become the practice in writing
contemporary ‘performance-based’ composite cylinder
standards to define a maximum fibre stress, rather than a
maximum liner stress, in the elastic use range. to ensure that
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in the long term there is no sudden fibre fracture leading to
catastrophic cylinder failure, due to sustained stress loading.
Fortuitously this practice is readily incorporated in, and
indeed simplifies, the present design theory as follows:
Substituting hoop stress oy from equation (1.17) into
equation (1.13) gives fibre stress oy in terms of pressure p

dco — Z - Ay dy
of =pP)———— | — | — 1960
ar ar

Now the term —[ay/ur]ogy 1s seen to be the fibre pre-stress
org when p=0. The coefficient [acg — Z - agl/ar is a
constant, because its constituents are design constants.
Let this be X. The general expression for fibre stress is
therefore

(J'f:X-p—i—(Tf() (118)

Now fibre stress ratio (FSR) is defined as the ratio of the
tensile strength of the wrapped fibre to the fibre stress at a
stated design pressure. Thus for fibre tensile strength 7%,
design pressure pq, fibre stress at design pressure Is
orq = Tt/FSR. Substituting these particular values of
fibre stress and pressure in equation (1.18) gives the
value of fibre pre-stress oy directly, thus
T; ;
Ofo—FSR X-])d (119)
and it follows from equation (1.13) that corresponding
liner pre-stress is

a
ogp = — (—f)ﬁfo (1.20)
de
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With knowledge of pre-stresses oy and oy, general
equations (1.17) and (1.18) can readily be applied across
the elastic range, providing the means of deducing a
complete stress—pressure map for liner and fibre.

Figure 1.5¢ depicts the general stress—pressure relation-
ships for liner hoop and fibre before and after autofrettage.
The gradient of liner hoop stress is Z, and that for fibre
stress 1s X, both being constants for the particular design.
At any given pressure p, stress difference due to
autofrettage is —oyqy for the liner and 4oy for the fibre.
It is observed from Fig. 1.5c that the usc of FSR to definc
maximum allowable fibre stress oy at pg results in
maximum possible fibre pre-stress oy, and consequently
in maximum possible liner compressive stress o). giving
minimum hoop stress at any applied pressure p. It follows
that this condition also produces lowest equivalent stress in
the liner and therefore would be associated with the best
possible fatigue resistance for the design.

To complete the analysis equivalent stress in the elastic
range is given by von Mises equation (1.2), substituting o,
for Y

202 = (09 — 1)’ +(01 — 0y +(0y — 09)° (1.21)

Equivalent stress is useful in assessing liner cyclic fatigue
performance.
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1.7 Autofrettage theory

Autofrettage is important in producing pre-stresses oy and
oro In liner and fibre, respectively. The preceding elastic
theory in Section 1.6 developed expressions for these pre-
stresses necessary to give the required design performance.
However, the actual provision of the correct pre-stresses
depends on achieving the requisite amount of plastic strain
in autofrettage, and therefore the latter process is an
essential part of any rigorous hoop-wrapped cylinder
design theory.

Figure 1.3 shows the autofrettage cycle for liner and
fibre with an idealized non-strain-hardening liner in plane
stress. Though not strictly valid for the triaxial stress state
of this theory, the figure provides a helpful analogy in
visualizing the mechanics of the autofrettage process. With
respect to Fig. 1.3 the process is seen to comprise two
distinctly different stages: firstly pressurizing the cylinder
to cause initial liner yield, involving elastic deformation of
both liner and fibre, followed by plastic straining of the
liner around the von Mises locus to a ‘conditioning’ point
where, on pressure release, the required pre-stresses o
and opy are permanently locked into the cylinder for
subsequent elastic operation in service.

For a strain-hardening material of initial yield strength
Yy, equal to the constant yield stress of Fig. 1.3, the initial
loading line up to and including first yield would be
identical, but thereafter in the plastic stage the effect of
strain-hardening would be progressively to increase current
yield stress Y above Yy, and thus increase the pressure
required to produce the same pre-stresses ogg and op.

In the following theory development the initial yielding
stage is considered first, followed by analysis of the plastic
strain stage for a non-strain-hardening material, and
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finally the theory is adapted for treatment of a strain-
hardening material.

1.7.1 Initial liner yielding

Yielding will occur when the principal stresses in the clastic
stage of first pressurization reach an intensity satisfying the
von Mises yield criterion, and the pressurc at which this
state occurs will be initial yield pressure py. Equation
(1.15) gives the elastic hoop stress oy = Z - p. longitudinal
stress 1S given by o= K:p. and mean radial stress
or = A-09—(1 — A)-p. Therefore all three lincr stresses
are expressible in terms of gencral pressure p. Substituting
these values into the yield criterion of cquation (1.2).
putting Y = Yy, provides pressure pyg. thus

Py = Yo{Z + K> +[AZ + 1) — 1]

—Z - K—(Z+KJAZ+1)—1]}7"° (1.22)

Having established liner initial yield pressure pyj. corre-
sponding values of liner stresses og. o1, and o, follow. Fibre
stress or at first yield is obtained via equation (1.18)
putting opy = 0.

1.7.2 Autofrettage pressure for non-strain-
hardening liner

Figure 1.3 shows for the liner the elastic unloading stress
pressure line from the autofrettage conditioning point.
Following unloading, re-pressurization would take place
along precisely this same line, which has been characterized
by equations developed in Section 1.6, until re-yielding
occurs at a pressure p, > py. Therefore, as in the case of
initial yielding, all three liner principal stresses are definable
in terms of general pressure p. ie. hoop stress
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oyp = Z - p+ oy from equation (1.17), longitudinal stress
o1 = K - p, radial stress o, = 4 -0y — (1 — 4) - p. The auto-
frettage pressure evaluation thus essentially follows that
described for initial yielding in Section 1.7.1, substituting
into von Mises yield criterion with constant yield stress Y
and letting p = p,, the autofrettage pressure, in the above
stress expressions. Although a general closed-form solution
for p, is possible by this route, the result is unwieldy and not
recommended for applied use. Instead, a better approach is
to first insert known numerical values for Z, K, A, and ogg
into the above expressions for oy, 01, and oy, and then solve
von Mises’ equation (1.2). The resulting quadratic in p,
gives the autofrettage pressure required to produce liner
and fibre pre-stresses ogg and oy, respectively.

Liner principal stresses oy, oj, and o, at pressure p,
follow, and corresponding fibre stress of is given by
equation (1.18).

An interesting feature of the above derivation for
autofrettage pressure is that although significant plastic
strain is involved in shifting the yield point around the von
Mises locus, the final result is obtained without any
consideration of strain whatsoever. This is not the case for
a strain-hardening material, as shown in the following
section.

1.7.3 Autofrettage pressure for a strain-hardening
liner

Figure 1.6 is a simplified plane stress analogy illustrating
the effect of liner strain hardening. Elastic lines a and b
represent pre- and post-autofrettage, respectively. Two
yield loci are shown, one representing initial yield stress
Yy, and the other current yieid stress Y, expansion of the
locus from Yy to Y being due to strain-hardening. Initial
loading takes place along line @, with initial yielding at
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Fig. 1.6 Plane stress analogy of strain-hardening in
autofrettage

point 1. For a given liner pre-stress oy, the autofrettage
plastic strain path for a non-strain-hardening material
would be | — 2 along the Y locus resulting in (analogy)
autofrettage pressure op/K. The exact triaxial analysis for
this condition is given in Section 1.7.2. For a strain-
hardening liner the strain path would not be I — 2 but
1 — 3, so as to accommodate the extension of line 5
necessary for preserving pre-stress ogy. In consequence,
autofrettage pressure for the analogy is increased o o:/K.
Of special note, if the non-strain-hardening autofrettage
pressure was applied to the strain-hardening liner, the
strain path would terminate at 2' corresponding 1o
intermediate yield stress Y, and on clastic recovery along
line 5" the resulting pre-stress would be of,. where
numerically o, < og. It follows that in subsequent service
the liner would be operating at an actual hoop stress
greater than that intended in design.

The basic approach to analysis is similar to that for the
non-strain-hardening liner of Section 1.7.2 except that the
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triaxial stress equivalent of point 3 in Fig. 1.6 is initially
unknown, and requires a method of successive approx-
imation, applying plastic stress—strain increment theory to
deduce current yield stress Y. Techniques applied in this
procedure are described below, and step by step calcula-
tions are given in Sections 2.1 and 2.2.

1.7.3.1 Determination of permanent plastic hoop strain

This quantity is key to evaluating equivalent strain, which
in turn governs current yield stress and hence autofrettage
pressure.

Figure 1.7 shows the hoop stress—strain relationships for
liner and fibre during the autofrettage cycle. Initial liner
yield occurs at point 1 (equivalent to point 1 in analogy
Fig. 1.6), and total hoop strain at the conditioning point
(point 3 in analogy Fig. 1.6) is &g In estimating strain
hardening, residual permanent plastic strain &gy, at o = 0,
is of interest. From Fig. 1.7 €op = Egr — oy, Where gq, 18
elastic recovery to the state oy = 0. Although this route to
establishing &g, 1s possible, it is complicated by the
Poisson’s ratio effect involving all three liner principal
stresses, and a more simple and direct way is to work in
terms of uniaxial fibre stress o to deduce hoop strain at
points of interest. Thus, from the equality of hoop strain,
gop 18 equal to the fibre strain e at oy =0 post-
autofrettage, and equations (1.17) and (1.18) can be
brought to bear as follows:

From equation (1.17), pressure p at oy =0 is
p = —oy/Z, and from equation (1.18) fibre stress oy at
og = 0 is therefore, oy = —(X/Z)oyy + o719, (noting that oy
is a negative quantity.) Thus, ey, = & = o7/ Ey, or

1 X
Eop = E I:UFO — (})Geo] (1.23)
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Fig. 1.7 Liner hoop and fibre stress versus strain in
autofrettage

Equation (1.23) informs that permanent plastic hoop strain
is a function only of design pre-stresses and design con-
stants, and is totally unaftected by strain-hardening. Forany
given design eq, can therefore be considered a constant,

1.7.3.2  Determination of equivalent permanent strain and
strain-hardened yield stress

Equivalent strain is a plasticity concept defining that strain
in simple tension producing the same amount of plastic
work per unit material volume as all the principal stresses
and strains in the complex system under consideration.
The concept is useful for assessing strain hardening in
autofrettage by converting the process strain to the
equivalent in simple tension.
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General equations relate strains to stresses in the plastic
state, and in the nomenclature of this theory appear as

Ocgp  Oclp,  Ogrp  Oegp

o a) o o

where 0¢ denotes a strain increment, and o’ denotes a mean
deviatoric stress over the strain increment, o. and &
referring to equivalent stress and strain, respectively.

Of the principal plastic strains only deg, is known
immediately, as given by equation (1.23). Deviatoric
equivalent stress o, can be written %oe, and in the plastic
range o. = Y. Deviatoric stress oy can be written in terms
of all three principal stresses as oy = [209 — (0] + 01)]/3.
The resulting equation linking equivalent strain to known
permanent hoop strain is thus

0ep B 2eqp
Ym 209m - (O'lm + O'rm)

(1.24)

In equation (1.24) all stresses are mean values over the
strain increment, and therefore an evaluation of equivalent
strain de.p, 1s possible only when the full complement of
stresses og, oy, 0, and Y are known at the start and finish
of the increment. Starting stresses are known from the
initial yielding theory of Section 1.7.1, but finishing
stresses are generally unknown because of the strain-
hardening; however, they are known for the special case of
zero strain-hardening analysed in Section 1.7.2. Therefore
the successive approximation procedure commences with
this latter condition and proceeds as follows:

Mean values of all stresses over non-strain-hardening
autofrettage are deduced from Sections 1.7.1 and 1.7.2



Development of the theory 45

and together with permanent hoop strain gop [rom
equation (1.23) are inserted into equation (1.24) to
provide a first approximation o equivalent strain, say
d¢ep1- A corresponding value for current yield stress. say
Y|, is read from the tensile stress—strain curve for the
liner material.

Using Y = Y, the theory of Section 1.7.2 is applicd to
deduce a new (higher) autofrettage pressure. say p,,. and
the corresponding liner principal stresses. say o). oy,
and oy, are evaluated. Mean values of all stresses.
including yield stress Y, = (Yo + Y,)/2, are inserted
into equation (1.24) and a second approximation (o
equivalent strain, say Jegn. obtained. and hence a
corresponding value for current yield stress, say Y-.

The above procedure is repeated until successive
values of Y are the same within acceptable error.
Usually two or three calculation ‘rounds’ suffice.

1.7.3.3  Autofrettage pressure and associated stresses

Use of the final value of current vield stress ¥ emergent
from the above procedure in the theory of Scction 1.7.2
provides autofrettage pressure p, and associated stress
0y, 01, and o;. Corresponding fibre stress oy is given by
equation (1.18).

A ready check on the validity of the calculated
autofrettage pressure is afforded by knowledge of fibre
pre-stress opp, which gives direct access to the required
diametrical (hoop) expansion 8D of the actual cylinder
measurable on completion of the autofrettage process. i.c.

8D . orp

= 1.25
D~ E (1.25)



46 Hoop-wrapped, composite, internally pressurized cylinders

1.8 Theoretical strains

Over the pressure range of manufacture and use three
strains are of interest, namely, fibre strain ¢, liner hoop
strain &y, and liner longitudinal strain &. Fibre strain is
fully elastic over this pressure range, and therefore readily
calculable once pressure at the point, or points, is known.
Following autofrettage the two liner strains, gy and &,
caused by pressurization are also fully elastic within the
use pressure range, and can be evaluated once the three
principal stresses, oy, 01, and oy, are known for the point,
or points, of interest. During autofrettage the liner
undergoes three stages of straining: firstly elastic straining
to initial yield, then plastic straining to the ‘conditioning’
point, and finally elastic recovery to zero pressure. Total
directional strain present in the liner during subsequent use
therefore comprises two components, pre-strain, and
elastic strain from use pressurization.

Figure 1.7 shows hoop strain eg—hoop/fibre stresses over
the manufacture/use range. The liner plastic phase during
autofrettage is shown as represented by rising hoop stress,
but this depends on strain hardening, as indicated in Fig.
1.6, and anyway does not influence the theoretical outcome.
Residual hoop strain ego is less than permanent plastic
strain ey, because of liner elastic compression by the fibre.

During autofrettage the liner is in a plastic state, and
permanent strain occurs not only in the hoop direction but
in the longitudinal direction also.

1.8.1 Strain in fibre

As the fibre is elastic, and uniaxially loaded, fibre strain ¢¢
1s directly proportional to fibre stress oy
ot

Ef = —
Er

(1.26)
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where of = X-p in pre-autofrettage loading, and
or = X - p+ o post-autofrettage [from equation (1.18)].
Similarly fibre strain increment d&; between two pressure
points p; — p; is given by

1
der = E(GD — 011) (1.27)

1.8.2 Elastic strains in liner

Between any two points of pressure p; — p» liner elastic
strain increment is given by the general equations:

Hoop strain increment

1
0€ge ZE[{Gez — o+ 012} — {o8r — (o1 + 011)}]

(1.28)

Longitudinal strain increment

1
O€le Z—E—l[{(flz — w002 + 0r2)} = o — vow +o)}]

(1.29)

where o= K-p, and o, = A4 - 09 — (1 — A) - p from equa-
tion (1.1). Hoop stress oy = Z - p from equation (1.15) for
pre-autofrettage, and o9 = Z-p + o9y post-autofrettage
[from equation (1.17)].

It is noted that a simpler route to hoop strain increment
dege than equation (1.28) is given via fibre strain increment
in equation (1.27), applying the hoop/fibre strain equality
condition.



48 Hoop-wrapped, composite, internally pressurized cylinders

1.8.3 Plastic strains in liner

Liner plastic hoop strain eg, was derived in Section 1.7.3.1
as equation (1.23). Knowing egp,, the general stress—plastic
strain increment equations provide an expression for
longitudinal plastic strain &,

o — 201m — (Urnl + UOm) e
Ip 209m - (Ulm + Urm) P

(1.30)

where principal stresses ogm, O, and o,y are mean values
over the strain increment corresponding to pressure
increase pyo — p, as already deduced in Section 1.7.3.

1.8.4 Total strains in liner post-autofrettage

These are generally the sum of elastic and plastic strains in
the direction of interest. Total hoop strain &g, at any given
pressure p < p, is given by the sum of eq, from equation
(1.23) and gy from equation (1.28). Corresponding total
longitudinal strain gy is e, from equation (1.30) + dey
from equation (1.29). Some care is required in applying
elastic strain equations (1.28) and (1.29) in the post-
autofrettage situation, because at zero pressure the liner
already contains hoop and longitudinal elastic strains
superimposed on permanent plastic strains, locked in from
the autofrettage process. The total directional elastic strain
present at subsequent pressurization in service is therefore
the algebraic sum of the locked-in strain plus that resulting
from service pressure. Unless there is particular interest in
evaluating these two components separately, the best
approach to total elastic strain via equations (1.28) and
(1.29) is to select the pre-autofettage zero pressure point as
the origin for calculation (i.e. suffix 1), where it is
positively known that all liner principal stresses, og, oy,
and o, are zero.
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However, it 1s noted that a simpler more direct route to
total hoop strain gy is via fibre strain e as given by
equation (1.26), invoking the strain equality condition.

1.9 Estimating liner current yield stress at
cylinder burst

Cylinder burst theory developed in Sections 1.3.3. 1.4, and
1.5 depends on current yield stress for quantitative
evaluations. As most liner materials exhibit some degree
of strain-hardening, current yield stress Y at the point of
burst will generally exceed initial yield stress Y. This
section investigates, and gives methods for estimating. the
amount of plastic strain inherent in the burst process, and
thus deriving the current yield stress for inclusion in burst
theory.

Von Mises plane stress analogy Fig. 1.1¢ is used for
visualizing general strain-hardening trends in the triaxially
stressed cylinder. In Fig. 1.1c for a non-strain-hardening
liner, bursting of the unwrapped cylinder is represented at
point 1, and the critical burst condition for the wrapped
cylinder at point 5. Over the range | — 5 fibre area and
burst pressure increase progressively, but all bursts in the
range are characterized by hoop failure, in which the fibre
reaches maximum tensile strength and fractures, resulting
in liner failure by pressure overload. This is the casc
because commonly used ductile metallic liners are capable
of greater total strain to failure than are commonly used
high-strength fibres. However, unless there is practical
evidence to support this, as a general check it is
recommended that calculated liner equivalent plastic strain
corresponding to fibre failure strain as derived from
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Section 1.9.2 does not significantly exceed uniform plastic
strain prior to neck formation measured in the liner tensile
test.

Note

An exception to the above general progression of fibre
fracture followed by liner hoop burst, could in theory
occur with very low amounts of fibre reinforcement, where
the liner may be capable of developing sufficient strength
through strain hardening to survive the pressure at which
fibre fracture took place. However this situation is largely
academic, since in practice the object of overwrapping will
be to add sufficient fibre to significantly increase burst
pressure.

1.9.1 Liner plastic hoop strain at burst

The fibre mechanical property of remaining elastic to
fracture provides the constant hoop strain at burst for all
hoop mode bursts over the range 1 — 5 in Fig. 1.1c, thus

From a strain-hardening aspect it is the liner plastic strain,
&pp, part of this total hoop strain which is of interest; this is
given by

Eop = €0t — E0e

where e is the elastic component of the total strain given
by

1
Eoc = E[Ge — (o1 + oy)]
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Thus, plastic hoop strain at burst is given by

1 1
L o9 — v(o1 + 0y)] (1.31)

“op :E L

where ag, 01, and o, are liner stresses at burst.

Returning to Fig. I.lc, it is clear that as fibre
reinforcement area increases, corresponding to anticlock-
wise rotation around the yield locus. the general trend is
for oy to decrease and oy to increase. Now since o, 1s small
compared with oy and oy, the corresponding trend given by
equation (1.31) is for &g, to increase as fibre area and burst
pressure increase.

Note

Both equations (1.31) and (1.23) are expressions for plastic
strain ggp,. However, these two expressions should not be
construed as interchangeable because they relate to two
fundamentally different conditions of cylinder behaviour.
Equation (1.31) is concerned with plastic hoop strain
developed in the liner up to the point of hoop bursting.
upon which event internal pressure p and all stresses
(09, 01, and o; 1n liner, oy in fibre) are dissipated to zero. By
contrast equation (1.23) is concerned with plastic hoop
strain developed in the autofrettage process, a quantity
that is, as shown in Section 1.7.3.1, equal to the common
hoop strain residing in fibre and liner following auto-
frettage, at a point when liner hoop stress oy is zero but p
exceeds zero, meaning that neither o(= K-p) nor
o{=A-09— (1 —A)-p)are zero at the point.

1.9.2 Liner equivalent plastic strain at burst

Knowledge of this quantity leads directly to current yield
stress.
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Although equation (1.24) was developed as part of
autofrettage analysis, it is a general equation for equivalent
plastic strain &, in terms of plastic hoop strain ey, and
mean principal stresses over the strain increment, and
equally applicable to plastic strain associated with burst-
ing. Considering the denominator of this expression,
209m — (01 + orm) 1n conjunction with Fig. 1.1c, ignoring
the effect of changes in small o, it is observed that as fibre
area and burst pressure increase, oy, decreases and ojy
increases, with the net result that the denominator of
equation (1.24) decreases. This, coupled with the deduced
trend for eg, from Section 1.9.1, implies that equivalent
strain &ep, and therefore current yield stress Y, will increase
as fibre reinforcement increases from ar = 0 to ar = aye. It
is clear that since liner equivalent strain depends on plastic
hoop strain, which in turn is mainly influenced by fibre
strain to failure, fibre modulus will be a major influence in
controlling liner general plastic strain and therefore
current yield stress at burst.

1.9.3 Procedure for estimating liner current yield
stress

At the very start of design to this theory it is important to
establish the true current yield stress, both at critical burst,
since this fixes liner wall thickness, and at design burst,
since this fixes fibre reinforcement area. Once these two
principal design variables are set, the remainder of the
design process follows. The successive approximation
procedure for establishing each is essentially the same,
namely:

1. Start with a first estimate yield stress for the burst
condition of interest.
2. Deduce liner plastic hoop strain at burst.
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3. Convert the hoop strain from point 2 into an equivalent
strain.

4. Use equivalent strain from point 3 in conjunction with
liner mechanical property data to establish a corre-
sponding yield stress.

5. Compare the yield stress from point 4 with that in point
1. If the same (within allowed tolerance), task is
complete. If not the same, use yield stress from point
4 as representative and repeat processes 2 — 3.

Usually two ‘rounds’ of the process are sufficient to fix
current yield stress. Detailed steps in the process are given
below.

1.9.3.1 Critical burst

The natural start point to proceedings is the critical burst
condition since this involves greatest strain and therefore
has current yield stress Y closest to tensile strength 7j.
Therefore to start, assume Y = 7 and solve equation (1.9)
to obtain A4, giving a first wall thickness ¢ for the
prescribed critical burst pressure pp.. Longitudinal stress
o1 = K- pre. hence radial stress o, follows from equation
(1.6), and hoop stress oy from equation (1.7), giving all
three principal stresses at critical burst.

Use oy in equation (1.10) to establish the fibre
reinforcement ag. necessary to give critical burst. (uag 1S
used in succeeding calculations, though never actually in
the designed and manufactured cylinder.)

Solve equation (1.31) to obtain plastic hoop strain &g,.

Deduce coefficient Z associated with equation (1.15),
putting ag. = ag, and hence solve equation (1.22) for initial
yield pressure pyg corresponding to fibre area ag.. Evaluate
principal stresses 0p, 01, and o at pyy.

Convert plastic hoop strain &g, to equivalent strain &g,
applying equation (1.24), using mean values of oy, o, oy,
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and Y over the strain increment corresponding to
Py0 = Phbe-

Obtain current yield stress Y corresponding to &, from
the liner’s tensile stress—strain mechanical property data
(see following note). This point of calculation corresponds
to point 5 above. Continue as appropriate.

1.9.3.2 Design burst

Since design burst is at lower pressure, and therefore
involves less plastic strain than the critical burst, current
yield stress evaluated for the latter (as described above) is
used as the starter Y. Also a firm and final value of wall
thickness parameter A4 corresponding to this yield stress
was derived from equation (1.9) as part of the procedure.
Starting from this position:

For prescribed design burst pressure ppq solve equation
(1.11a) for hoop stress oy at design burst. Derive
companion stresses, oy and o, at design burst.

Use oy in equation (1.12a) to establish the fibre
reinforcement apq necessary to give design burst ppg.

Solve equation (1.31) to obtain plastic hoop strain &g,.

Deduce coefficient Z associated with equation (1.15),
putting arq = ar, and hence solve equation (1.22) for initial
yield pressure py corresponding to fibre area ary. Evaluate
principal stresses oy, 01, and o, at pyo.

Convert plastic hoop strain ey, to equivalent strain e,
using equation (1.24), ensuring that mean values of
09,01, 0, and Y are used over the strain increment
corresponding to pyy —> Phd-

Obtain current yield stress ¥ corresponding to &, from
the liner’s tensile stress—strain mechanical property data
(see following note). This point of calculation corresponds
to point 5 above. Continue as appropriate.
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Note

The stress—strain mechanical property data referred to are
the data obtained in the tensile test from initial yield (or
proof stress) up to the point of maximum load, which
corresponds to the range of wuniform elongation, prior to
the start of neck formation. Only permanent plastic strain
is of interest, and if strain readings from the testing
machine include an elastic component the latter should be
zeroed out from the data. For commonly used liner
materials uniform elongation will typically be no more than
one-half of the total elongation for a proportional gauge-
length specimen. Because of the relatively low strain
hardening of these liner materials with Y,/7; typically
~0.9, the plastic stress—strain curve of interest can be
adequately represented by a simple mathematical model,
once 1nitial yield stress, tensile strength, and uniform strain
to maximum load-point are known. Such a model is
derived in Annex 3 and is used in the examples in Part 2
which illustrate the use of the design theory.






Part 2







Application of the theory

The most practical way to demonstrate application is to
theoretically evaluate actual hoop-wrapped cylinders for
which independently obtained test results are known. For
this purpose results from an exiensive experimental
programme conducted by Alcoa Laboratories in the mid-
1980s (1), are drawn upon.

The Alcoa experiments were based on 13 inch (330 mm)
diameter liners, nominally 0.5 inch (12.7mm) wall thick-
ness, overwrapped with E-glass fibre in a polyester resin
matrix, the composite cvlinders being for use as CNG
(compressed natural gas) fuel tanks at 3000 Ib/in® nominal
service pressure. Two sets of experiments were carried out
involving 26 cylinders. In one set, the autofrettage process
was investigated by subjecting liners with differing
amounts of reinforcement to a common autofrettage
conditioning pressure, and measuring stresses/strains
occurring as a result. In the other set, cylinder bursting
was investigated, and in particular the critical condition
where burst mode changes from hoop to longitudinal with
increasing fibre reinforcement.

All experimental results by Alcoa were presented in
‘imperial” units. However, as it is now increasingly the
convention to work in international ‘metric units’, test
results have been converted into metric for comparison
with this theory.

The theory is first applied to the actual cylinders
produced and tested by Alcoa, to demonstrate accuracy
of prediction; the theory is then used to design from basics
a cylinder meeting the Alcoa burst pressure specification.
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2.1 Comparison of theory with experiment

All test data in this section are from the Alcoa paper except
where otherwise noted.

2.1.1 Cylinder details

2.1.1.1 Aluminium liner

e Material: alloy 6061.
e Mechanical properties:
— yield stress, 276 MPa;
— tensile strength, 324 MPa (see note);
— tensile modulus, 69 x 10° MPa;
— Poisson’s ratio, 0.3.
e Dimensions:
— external diameter, 330.2 mm;
— wall thickness, 12.75 mm.

Note

The tensile strength given by Alcoa is 41.6 x 10°1b/in’
equivalent to 287 MPa, at 16 percent elongation. Alcoa
arrived at this figure by manipulation of mathematically
generated stress—strain curves, and it is believed to be in
error. By comparison, standard BS 5045:3 gives yield/
tensile properties for alloy 6061 as 280/325 MPa respec-
tively, a range common to several ‘Series 6000 alloys used
for gas cylinders. For this reason tensile strength for the
Alcoa cylinder has been put at 324 MPa, since an accurate
value of this property is essential to theoretical predictions.

2.1.1.2  Overwrap

Fibre
e Material: E-glass.
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e Mechanical properties:
— tensile strength, (impregnated strand) 1724 MPa;
— tensile modulus, 72.4 x 10* MPa.

Resin

e Material: polyester.

e Mechanical properties:
— tensile strength, 29 MPa;
— tensile modulus, 1.17 x 10° MPa:
— ultimate elongation, 30 percent.

2.1.1.3 Overwrapped cylinder pressures

e Nominal service pressure: 207 bar.
e Required minimum burst pressure: 517 bar.
e Autofrettage pressure (where applied): 400 bar.

2.1.2 Cylinder burst evaluations

2.1.2.1 Experimental results

Figure 2.1 is a conversion from Fig. 13 of the Alcoa paper
showing experimental burst pressure versus fibre reinforce-
ment area. Six data points are shown, each covering three
separate cylinder tests. Three of the data points, numbers
1, 2, and 3, represent hoop bursts, and three, numbers 4. 5,
and 6, represent longitudinal bursts. A further data point,
7, represents the unwrapped cylinder (ay = 0). A striking
feature of the data is the completely flat characteristic once
critical burst pressure is attained, further reinforcement
providing no further pressure increase. By converging the
two burst trend lines Teply and Herbein estimated that a
critical burst pressure pn. of 563 bar occurred with fibre
area 8.7 mm?/mm.
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Data point Fibre area ar  Burst pressure p,,
number (mm?/mm) (bar)
1 2.59 379
2 493 480
3 7.39 530
4 10.34 563
5 12.45 563
6 14.94 563
Estimated py, 8.7 563
7 (unwrapped) 0 276
Note, 4y = total fibre area both sides.
Burst pressure versus fibre area
600
4 | 5 [§]
650 | o . | 3 * pA i
500 — I B Alcoa estimated
* i critical burst point }
450 4 - L T —
1 !
400 - g ] —
[ ] i ‘
350 - — =] — —
30 f 7 — i e - — -
® i ) |
250 H unwrappTd cylinder i B - »
200 | ; | ;
0 2 4 6 8 10 12 14

Fig. 2.1

fibre area a; mm%mm

Alcoa experimental burst test results

16
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2.1.2.2 Theoretical results

The general procedure is to first evaluate the critical burst
condition, because this will be associated with maximum
plastic strain and therefore highest yield stress, and then
use the emergent yield stress as the first approximation to
that in the highest pressure hoop burst under considera-
tion, and so on to evaluate fibre areas at various
descending hoop burst pressures affording comparison
with Fig. 2.1.

The plastic stress—strain model developed in Annex 3
requires a value for maximum uniform strain in the tensile
test. While the Alcoa paper quotes an ‘ultimate strain® of
16 percent, it is not clear if this was measured on a
proportional gauge length. Because of this uncertainty,
elongation of 12 percent from BS5045:3 is used, and it is
assumed that the uniform component of this elongation is
one-half of the total, namely 6 percent. The resulting Y&,
model is

Y = 324[0.85 + 5(eep) — 41.7(2ep)’]

1. Evaluation of the critical burst condition

From data in Section 2.1.1 liner geometric parameters
are: A=1/D=0.0386, d=D —2r=3047mm, K= d°/
(D* —d?) = 5.73.

Current yield stress Y at critical burst is initially
unknown, because of strain-hardening, and solution
follows the procedure of Section 1.9.3.1, first conducting
a conditional evaluation on the basis of an assumed
current yield stress value (taken as Y = T} because of the
anticipated strain to failure), and then by subsequent
analysis confirming that the assumption was correct. In the
following worked calculations, steps (i), (ii), and (111) cover
the basic critical burst evaluation and steps (iv) to (X)
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inclusive cover validation of the initially assumed yield
stress used in the evaluation. (It so happens that a single
round of calculations is sufficient to provide a solution.
However, if this had not been the case, a further round
would be conducted, starting with the new value of Y
emergent from the previous round.)

(1)
(ii)

(iii)
(iv)
v)

(vi)
(vii)

(viii)

(ix)
(x)

Assuming Y = Ty = 324 MPa for first approxima-
tion, equation (1.9) gives py,. = 567 bar.

Principal liner stresses at pp. are, following the
evaluation procedure recommended in Section
1.3.3.2, after equation (1.9). o1 = K- py,. = 3249
MPa, o, from equation (1.6) = —49 MPa, oy from
equation (1.7) =149 MPa.

From equation (1.10), putting o9 = 149 MPa from
(ii), fibre area at critical burst g = 7.82 mm?/mm.
Applying equation (1.31), using stresses from (ii),
liner plastic hoop strain &g, = 2.3 percent to failure
at poc.

Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 9.41.
Applying Z = 9.41 from (v) in equation (1.22), liner
initial yield pressure pyg = 314.8 bar.

Evaluating liner principal stresses at pyo: 09 = Z-pyo=
296.2MPa, o= K py =1804MPa, o, = —1838
MPa from equation (1.1).

From (ii) and (vii) mean liner stresses over the strain
increment corresponding to pyg — puc are therefore:
Opm = 222.6 MPa, o1y = 252.7MPa, oy = —33.9
MPa, and Y, = [(276 + 324)/2] = 300 MPa.

Putting &g, from (iv) in equation (1.24), liner
equivalent plastic strain &, = 6.1 percent.

From the tensile stress—strain model above, at
gep = 6.1 percent, Y =324MPa, validating the
initial assumption and hence the result of critical



Application of the theory 65

burst pressure =567 bar in step (i) is confirmed as
correct.

Result:

e Critical burst pressure pp. = 567 bar.
e Fibre reinforcement area to give pye, dge = 7.82 mm?/
mm (total both sides).

2. Evaluation of fibre area to give a prescribed burst
pressure of 500 bar

(500 bar is selected as being just below the established

critical burst pressure.)

The task is to determine the amount of fibre overwrap
required on a liner of the prescribed size, to provide a hoop
burst at 500 bar. As in evaluation 1 above, because of
strain-hardening the current yield stress at bursting is
initially unknown, and solution therefore follows the
procedure of Section 1.9.3.2. Although the latter refers
specifically to ‘design burst’, the procedure is generally
applicable to all hoop bursts py, where py < pi, < ppe. and
involves first a conditional evaluation on the basis of an
assumed current vyield stress confirmed by subsequent
analysis. In the following worked calculations, steps (1) and
(ii) cover the basic fibre area evaluation, and steps (1i1) to
(ix) inclusive cover validation of the assumed current yield
stress. Two rounds of calculation are necessary to arrive at
a correct solution.

For a first approximation, current yield stress at burst 1s
assumed to be that at py, i.e. ¥ = 324 MPa, on the basis
that this represents a known upper bound.

(i)  With respect to equation (1.11), associated expres-
sions for constants m and n give: m = 263 MPa, and
constant n = —7.07 x 103(MPa)?. Hence. liner prin-
cipal stresses at burst are: ogp = 287.6 MPa from



66

(ii)

(iii)
(iv)
(v)
(vi)

(vii)

(viii)

(ix)
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equation (1.11), o, =K-p, =286.5MPa, o, =
—37.0 MPa from equation (1.1).

From equation (1.12), putting og = 287.6 MPa from
(1), for a 500 bar burst, fibre area apy =
4.58 mm?/mm.

From equation (1.31), liner plastic hoop strain
ggp = 2.07 percent to hoop failure.

Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 10.30.
Applying Z = 10.30 from (iv) in equation (1.22) liner
initial yield pressure pyo = 292.1 bar.

Evaluating liner principal stresses at py:op =
Z - pyo = 3009MPa, oy = K- py =167.4MPa, o, =
—16.5MPa from equation (1.1).

From (i) and (vi) mean liner stresses over the strain
increment corresponding to pyy — py, are therefore:
Oom = 294.2MPa, oy, =226.9MPa, o, = —26.7
MPa, and Y, =[(276 + 324)/2] = 300 MPa.
Putting eg, from (iii) in equation (1.24) liner
equivalent plastic strain &, = 3.20 percent.

From the tensile stress—strain model, at gep = 3.20
percent, ¥ = 313.3 MPa, indicating that the assump-
tion of Y = 324 MPa made at the start of calculation
i1s too high, and invalid, necessitating a further
calculation round.

For a second approximation, current yield stress at burst

is assumed that from the first approximation, i.c.
313.3 MPa.

(1)

With respect to equation (1.11), associated expres-
sions for constants m and n give: m = 263 MPa, and
constant n = 0. Hence, liner principal stresses at
burst are: op = 263.0 MPa from equation (1.11),
op=K- p, =286.5MPa, o, =-379MPa from
equation (1.1).
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(i) From equation (1.12), putting oy = 263.0 MPa from
(i), for a 500 bar burst, fibre area «p =
4.95mm?/mm.

(iii) From equation (1.31), liner plastic hoop strain
ggp = 2.11 percent to hoop failure.

(iv) Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 10.19.

(v) Applying Z = 10.19 from (iv) in equation (1.22) liner
initial yield pressure pyy = 294.8 bar.

(vi) Evaluating liner principal stresses at py:op =
Z - py =300.4MPa, 0y =K py = 168.9 MPa. o, =
—16.7MPa from equation (1.1).

(vii) From (i) and (vi) mean liner stresses over the strain
increment corresponding to pyy — pp are therefore:
oom = 281.7MPa, oy, = 227.7MPa, oy = —27.3
MPa, and Y., = [(276 + 313.3)/2] = 294.7 MPa.

(viii) Putting egp, from (iii) in equation (1.24). liner
equivalent plastic strain &g, = 3.43 percent.

(ix) From the tensile stress—strain model, at &, = 3.43
percent, ¥ = 315 MPa. Since this value is close to the
assumed value, Y = 315MPa is taken as the current
yield stress at p, = 500 bar.

[t remains to repeat steps (i) and (ii) of the procedure using
Y = 315MPa. Hence, from step (i) m = 263.0 MPa,.
n=—1.1 x 103(MPa)’, giving oy = 267.1 MPa, and from
step (ii) using this value of oy in equation (1.12) gives fibre
reinforcement area agp, = 4.89 mm?/mm (total both sides).

3. Evaluation of fibre area to give a prescribed burst
pressure of 400 bar

The procedure is exactly that of evaluation 2 above, two

rounds of calculation being necessary to arrive at a correct

solution. For a first approximation, current yield stress at

burst is assumed to be that at p, = 500bar, 1e.
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Y =315MPa from evaluation 2, since this represents a
known upper bound.

(1)

(il

(iii)
(iv)
v)

(vi)

(vii)

(vii)

(ix)

With respect to equation (1.11), associated expres-
sions for constants m and »n give: m = 210.4 MPa,
and constant n = —37.8 x 10° (MPa)’. Hence, liner
principal stresses at burst are: oy = 326.3 MPa from
equation (1.11), o= K- -py, =229.2MPa, o, =
—25.9 MPa from equation (1.1).

From equation (1.12), putting oy = 326.3 MPa from
(i), for a 400 bar burst, fibre area ap, = 2.24mm?/
mm.

From equation (1.31), liner plastic hoop strain
egp = 2.0 percent to hoop failure.

Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 11.07.
Applying Z = 11.07 from (iv) in equation (1.22) liner
initial yield pressure pyo = 274.3 bar.

Evaluating liner principal stresses at pyo: op =
Z - py =303.7MPa, o1 = K- pyo = 157.2MPa, o, =
—14.6 MPa from equation (1.1).

From (1) and (vi) mean liner stresses over the strain
increment corresponding to pyy — py, are therefore:
Opm = 315.0MPa, oy, =193.2MPa, oy = —20.3
MPa, and Yy, = [(276 + 315)/2] = 295.5 MPa.
Putting &g, from (iii) in equation (1.24), liner
equivalent plastic strain ., = 2.58 percent.

From the tensile stress-strain model, at &, = 2.58
percent, ¥ = 308.2 MPa, indicating that the assump-
tion of ¥ = 315 MPa made at the start of calculation
is too high, and invalid, necessitating a further
calculation round.

For a second approximation, current yield stress at burst
1s assumed to be that from the first approximation, i.e.
308.2 MPa.



(i)

(i)

(iii)
(iv)
v)

(vi)

(vi1)

(viii)

(ix)
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With respect to equation (1.11), associated expres-
sions for constants m and n give: m = 210.4 MPa,
and constant n = —33.4 x 10° (MPa)z. Hence, liner
principal stresses at burst are: g = 316.1 MPa from
equation (1.11), oy=K p, =229.2MPa, o, =
—26.3 MPa from equation (1.1).

From equation (1.12), putting oy = 316.1 MPa from
(i), for a 400 bar burst, fibre area ap = 2.39 mm?/
mm.

From equation (1.31), liner plastic hoop strain
gop = 2.01 percent to hoop failure.

Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 11.02.
Applying Z =11.02 from (iv) in equation (1.22),
liner initial yield pressure pyy = 275.5 bar.
Evaluating liner principal stresses at py: oy =
Z - py =303.6MPa, o = K- py = 157.9MPa. o, =
—14.8 MPa from equation (1.1).

From (1) and (vi) mean liner stresses over the strain
increment corresponding to pyy — py are therefore:
oom = 309.9MPa, oy, = 193.6 MPa, oy = —20.6
MPa, and Y., =[(276 + 308.2)/2] = 292.1 MPa.
Putting &g, from (iii) in equation (1.24). liner
equivalent plastic strain ., = 2.63 percent.

From the tensile stress—strain model, alt e, =
2.63 percent, Y = 308.7MPa. Since this value is
close to the assumed value, ¥ = 309 MPa is taken
as the current yield stress at py, = 400 bar.

It remains to repeat steps (i) and (i1) of the procedure
using Y = 309 MPa. Hence, from step (i), m = 210.4 MPa,
n=-3391 x 10° (MPa)’, giving oy = 317.3MPa, and
from step (i1) using this value of oy in equation (1.12)
gives fibre reinforcement area ap, = 2.38 mm?/mm (total
both sides).
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4. Evaluation of fibre area to give a prescribed burst
pressure of 350 bar

The procedure is exactly that of evaluations 2 and 3 above.
Two rounds of calculation are made for completeness, but
as will be seen the first round provides a result close
enough to permit a good estimate. For a first approxima-
tion, current yield stress at burst is assumed to be that at
pr = 400 bar, 1.e. Y = 309 MPa, from evaluation 3 since
this represents a known upper bound.

(@)

(ii)

(iii)
(iv)

(vi)

(vit)

(viii)

With respect to equation (1.11), associated expres-
sions for constants m and n give: m = 184.1 MPa,
and constant n = —49.2 x 10° (MPa)’. Hence, liner
principal stresses at burst are: oy = 332.2 MPa from
equation (1.11), oy = K- p,, = 200.6 MPa, o, = —20.8
MPa from equation (1.1).

From equation (1.12), putting o9 = 332.2 MPa from
(i), for a 350bar burst, fibre area amp =
1.27 mm?/mm.

From equation (1.31), liner plastic hoop strain
gop = 1.98 percent to hoop failure.

Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 11.43.
Applying Z = 11.43 from (iv) in equation (1.22) liner
initial yield pressure pyy = 266.6 bar.

Evaluating liner principal stresses at py: oy =
Z - py =3047MPa, 0y =K pyy = 152.8 MPa, o, =
—13.9 MPa from equation (1.1).

From (i) and (vi) mean liner stresses over the strain
increment corresponding to pyg — pp are therefore:
oom = 318.5MPa, o, =176.7MPa, oy =—174
MPa, and Yy, = [(276 + 309)/2] = 292.5 MPa.
Putting eq, from (iii) in equation (1.24) liner
equivalent plastic strain e, = 2.42 percent.
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From the tensile stress—strain model. at
gep = 2.42 percent, ¥ = 306.7MPa. This is close
enough to the assumed Y = 309 MPa to guess the
actual current Y being around 307 MPa, but for
completeness a second approximation is run as
shown below.

For a second approximation, current yield stress at burst
is assumed to be that from the first approximation, i.e.
306.7 MPa.

(1)

(if)

(iif)
(iv)

(vi)

(vii)

(viii)

With respect to equation (1.11), associated expres-
sions for constants m and n give: m = 210.4 MPa,
and constant n = —47.73 x 10* (MPa)’. Hence. liner
principal stresses at burst are: og = 329.1 MPa from
equation (l.11), oy =K p, =200.6 MPa, o, =
—20.9 MPa from equation (1.1).

From equation (1.12), putting oy = 329.1 MPa from
(1), for a 350bar burst, fibre area «ay, =
1.32 mm?/mm.

From equation (1.31), liner plastic hoop strain
gop = 1.98 percent to hoop failure.

Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 11.41.
Applying Z = 11.41 from (iv) in equation (1.22) liner
nitial yield pressure pyy = 267.0 bar.

Evaluating liner principal stresses at py: 09 =
Z-py =3046MPa, oy=K-py=153.0 MPa,
or = —13.9MPa from equation (1.1).

From (i) and (vi) mean liner stresses over the strain
increment corresponding to pyy — py, are therefore:
Opm = 316.9MPa, o, =176.8 MPa, oy =—174
MPa, and Yy, = [(276 + 306.7)/2] = 291.4 MPa.
Putting eq, from (iii) in equation (1.24) liner
equivalent plastic strain e., = 2.43 percent.
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(ix) From the tensile stress—strain model, at &, =
2.43 percent, Y = 306.8 MPa. Since this value is
almost the same as the assumed Y = 306.7 MPa,
the latter is taken as the yield stress at p, = 350 bar,
and hence, from step (ii) above, corresponding fibre
reinforcement ap, = 1.32 mm?/mm (total both sides).

2.1.2.3  Comparison of theoretical and experimental burst
results

Figure 2.2 shows theoretical results for critical burst, and
hoop bursts at 500, 400, and 350 bar superimposed on the
Alcoa experimental results of Fig. 2.1.

As can be seen theory predicted the critical burst
pressure very closely, within less than 1 percent of that
measured. As Teply and Herbein noted, it is difficult to
pinpoint the critical condition experimentally, and it is
therefore inappropriate to draw too much from an
estimated versus theoretical reinforcement comparison,
except to say that both occur at around the same fibre
area, with it would seem, theory slightly under-
predicting.

In the hoop burst range, theory overestimates burst
pressure by around 4-6 percent, the difference being
least at higher burst pressures, i.e. > 500 bar, as would
normally be designed for in practice.

2.1.3 Cylinder autofrettage evaluations

In the Alcoa experiments, Teply and Herbein took liners in
accordance with Section 2.1.1, and overwrapped with three
different amounts of fibre reinforcement. These cylinders
were then subjected to a common autofrettage pressure of
400 bar, and strains developed at this pressure, together
with strains permanently residing on release of pressure,
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Fig. 2.2 Comparison of prediction from the theory with
experimental results for cylinder bursting

were measured by strain gauges bonded onto the cylinder
surfaces. In this section strains recorded in the Alcoa
experiments are compared with those derived from the
theory, the latter evaluation invoking in the process wide
use of many of the theoretical formulae, and therefore
being generally instructive in application of the theory.

2.1.3.1 Experimental results

Table 2.1 gives hoop and longitudinal strains measured by
Teply and Herbein for cylinders carrying the stated
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Table 2.1 Experimental strains in autofrettage — Alcoa

Auto- Total strain at Residual strain at
frettage  Fibre area autofrettage (%) zero pressure (%)
Cylinder pressure  a; (mm?
number (bar) /mm) Hoop  Longitudinal Hoop  Longitudinal
1 400 5.41 1.30 0.40 0.75 0.25
2 400 8.29 0.85 0.38 0.40 0.13
3 400 10.81 0.60 0.20 0.20 0.08

(converted) fibre areas, all autofrettaged at 400 bar. These
data are taken from Figs 9 and 10 of the Alcoa paper. As
to be expected, highest strains occur with lowest
reinforcement.

Note

A review of burst results in Section 2.1.2, summarized in
Fig. 2.2, reveals that the reinforcement of cylinder 1 would
give hoop burst, that of cylinder 2 would give more or less
critical burst, and that of cylinder 3 longitudinal burst.

2.1.3.2 Theoretical results

The theory developed in Sections 1.7.2 and 1.7.3 is
employed, using successive approximation to establish
current yield stress at autofrettage pressure. However,
because this theory is intentionally written for the usual
case of deducing autofrettage pressure required to give
prescribed elastic design performance in terms of pre-stress,
it is necessary to modify the order of calculation. The
situation is explained by reference to simplified analogy Fig.
1.6, where the usual ‘design approach’ task is to extrapolate
the prescribed line » beyond point 2 on the initial yield locus
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to locate point 3 on the current yield locus. However, in the
case of the experimental Alcoa cylinder, autofrettage
pressure is pre-fixed at 400 bar, meaning that longitudinal
stress o) is also pre-fixed, and therefore the task i1s to
extrapolate along this constant oy line to intersect stress path
1 — 3 at a point analogous to 2.

As observed in Section 2.1.3.1, only Alcoa cylinder 1|
would meet the hoop burst requirement for cylinders in
service, developing strains typical of the latter. Therefore,
since the theoretical calculation process is essentially the
same for all three tested cylinders, in the interests of
brevity only cylinder 1 is evaluated here.

There are three sequential stages to the theoretical
evaluation of autofrettage for the Alcoa cylinder: firstly,
deducing the current strain-hardened yield stress of the
liner at the prescribed autofrettage pressure of 400 bar:
secondly, evaluating stresses generated in the autofret-
tage pressure cycle; thirdly, determining strains devel-
oped in autofrettage. Detailed calculation procedures for
each of these stages are given in the following
subsections.

1. Evaluation of current vield stress developed at
autofrettage

Basic data for all the Alcoa cylinders are given in Section

2.1.1.

For the autofrettaged cylinder of interest, fibre arca
ar = 5.41 mm?/mm.

From Section 2.1.1, derived data includes: 4 = /D =
0.0386, d=(D—21)=3047mm, K=d*/(D°—d")=
5.73.

Liner stress coefficient Z in the expression associated
with equations (1.15) and (1.17) evaluates from the above
data to Z = 10.06.
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Fibre stress coefficient X in the expression associated
with equation (1.18) evaluates from the above data
(including Z) to X = 8.90.

From equation (1.22), putting Y, =276 MPa, initial
yield pressure pyo = 298 bar.

Principal liner stresses associated with pyy are;
op = Z-py() =299.8 MPa, (= K-py() =170.8 MPa, gy =
—17.1 MPa from equation (1.1).

All the above data are common to the following yield
stress evaluation at autofrettage.

The evaluation procedure is to first assume a represen-
tative value for Y at p, and then confirm by analysis that
the assumption was valid. A key step in the procedure is
adaptation of the theory developed in Section 1.4 for hoop
bursting into a more general form for deducing liner hoop
stress og and associated fibre stress oy in the pressure range
Pyo < p < pp. 1.. corresponding to prescribed p, = 400 bar.
Having evaluated oy and oy at p,, equations (1.17) and
(1.18) are used to deduce associated pre-stresses og and
oo, respectively, and these provide the means of solving
equation (1.23) for plastic hoop strain eg,, and hence
equivalent strain ., and a validating yield stress Y for
comparison with the starting assumed value. Calculation
commences by initially assuming that Y takes the value of
Yy (as though the liner is non-strain-hardening) and
proceeds in rounds until Y from the round reconciles
with that assumed at the start of the round. In the
following worked evaluation three rounds of calculation
are necessary to arrive at a valid current yield stress.
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First approximation to yield stress, assuming Y = Y,=

276 MPa

(1)

(if)

(iif)

(iv)

(vi)

(vii)

(viii)

Adapting equation (1.11) to autofrettage by sub-
stituting prescribed p, = 400 bar for py, in associated
expressions for m and n, gives m = 210.4 MPa and
n=—13.86 x 10°(MPa)’. Hence at p, = 400 bar:
op = 263.1 MPa, from equation (l.11), o= K p,
= 229.2MPa, o, = —28.3 MPa from equation (1.1).
Adapting equation (1.12) to autofrettage by sub-
stituting: o7 for Ty, ar = prescribed5.41 mm-®/mm for
ary, pa = 400 bar for py; and putting oy = 263.1 MPa
from (i); transposition gives oy = 1012.7 MPa.
Transposing equation (1.17) for oy, and putting
op = 263.1 MPa from (i) when p = p, = 400 bar.
gives, ogo = —139.3 MPa.

Transposing equation (1.18) for oy, and putting
or = 1012.7MPa from (ii)) when p = p, = 400 bar,
gives, opg = 656.7 MPa.

From equation (1.23) liner plastic hoop strain
gop = 1.08 percent at p,.

Thus liner mean stresses over the strain increment of
pressure pyy — p, are, from common data stresses at
pyo  (above) and (i): ogn = 281.5MPa, o, =
200MPa, oy, = —22.7MPa, and Y, =276 MPa
(= Yo).

Putting &g, from (v) in equation (1.24) liner
equivalent plastic strain e, = 1.55 percent.
Substituting this value of &, in the tensile stress—
strain - model, Y = 324[0.85 + 5(sep) — 41.7(ep)" ],
gives Y =297MPa. Since Y =297MPa is signifi-
cantly different from the initially assumed
Y =276 MPa, a further round of calculation is
necessary commencing with Y = 297 MPa.
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Second approximation to yield stress, assuming Y =

297 MPa

(1)

(1)

(iif)

(iv)

(v)
(vi)

(vii)

(viii)

Adapting equation (1.11) to autofrettage by sub-
stituting prescribed p, = 400 bar for py, in associated
expressions for m and n, gives m = 210.4 MPa and
n=—26.36 x 10°(MPa)’. Hence at p, = 400 bar:
og = 298.7MPa, from equation (1.11); o=
K- p, =229.2MPa; o, = —26.9 MPa, from equation
(1.1).

Adapting equation (1.12) to autofrettage by sub-
stituting: oy for T, ap = prescribed 5.41 mm?/mm
for ap,p, =400bar for pp; and putting op =
298.7MPa from (i); transposition gives or =
844.9 MPa.

Transposing equation (1.17) for ogy, and putting
o9 = 298.7MPa from (i) when p = p, =400bar,
gives, ogg = —103.7 MPa.

Transposing equation (1.18) for op, and putting
or = 8449 MPa from (ii) when p = p, =400 bar,
gives, opy = 488.9 MPa.

From equation (1.23) liner plastic hoop strain
ggp = 0.80 percent at p,.

Thus liner mean stresses over the strain increment of
pressure pyo — p, are, from common data stresses at
pyo (above) and (i): ogn = 299.3MPa, o, = 200
MPa, o, = —22.0MPa, and Y, = [(276+ 297)/
2] MPa = 286.5 MPa.

Putting g, from (v) in equation (1.24), liner
equivalent plastic strain &, = 1.09 percent.
Substituting this value of e, in the tensile stress/
strain - model: ¥ = 324[0.85 + S(ecp) — 41.7(ep)’],
gives Y =291.5MPa. Since Y =291.5MPa is sig-
nificantly different from the assumed Y = 297 MPa,
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a further round of calculation 1s necessary, com-
mencing with ¥ = 291.5MPa.

Third approximation to yield stress, assuming Y =

291.5 MPa

(1)

(if)

(iii)

(iv)

(v)
(vi)

(vii)

(vii)

Adapting equation (1.11) to autofrettage by sub-
stituting prescribed p, = 400 bar for py,. in associated
expressions for m and n, gives m = 210.4MPa and
n=-230x 10 (MPa)z. Hence at p, = 400 bar:
op = 289.8 MPa, from equation (l.11). o =
K- p, =229.2MPa, o, = —27.3MPa from equation
(1.1).

Adapting equation (1.12) to autofrettage by sub-
stituting: o for Ty, ¢y = prescribed 5.41 mm-~/mm for
amp, p. = 400 bar for py; and putting oy = 289.8 MPa
from (i); transposition gives o = 886.9 MPa.
Transposing equation (1.17) for oy, and putting
og = 289.8 MPa from (i) when p = p, = 400 bar.
gives, ogy = —112.6 MPa.

Transposing equation (1.18) for oy, and putting
or = 886.9MPa from (ii) when p = p, =400 bar,
gives, opo = 530.9 MPa.

From equation (1.23) liner plastic hoop strain
egp = 0.87 percent at p,.

Thus liner mean stresses over the strain increment of
pressure pyy — p, are, from common data stresses at
pyo (above) and (i): ooy = 294.8 MPa, oy, = 200
MPa, o,y = —22.2MPa, and Y, =[(276+ 291.5)/
2]MPa = 283.8 MPa.

Putting &g, from (v) in equation (1.24) liner
equivalent plastic strain e, = 1.20 percent.
Substituting this value of &, in the tensile stress
strain - model: Y = 324[0.85 + 5(e.) — 41.7(e0) .
gives Y = 293 MPa.
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Since this value of Y is close to that from the second
approximation, Y =293MPa is taken as the strain-
hardened yield stress resulting from autofrettage at

400

2.

(1)

(i1)

(iif)

(iv)

(v)

bar.

Evaluation of post-autofrettage elastic stresses
(Y=293MPa)

Adapting equation (1.11) to autofrettage by substi-
tuting prescribed p, = 400 bar for py, in associated
expressions for m and n, gives m = 210.4 MPa and
n=-2391 x 10> (MPa)’. Hence at p, =400 bar:
op = 292.2MPa, from equation (1.11), oy =K -p, =
229.2MPa, o, = —27.2 MPa from equation (1.1).
Adapting equation (1.12) to autofrettage by substi-
tuting: op for Ty, ar = prescribed 5.41 mm?/mm for
dpp, pa = 400 bar for py; and putting oy = 292.2 MPa
from (i); transposition gives oy = 875.6 MPa.
Transposing equation (1.17) for ogy, and putting
op =292.2MPa from (1) when p = p, =400 bar,
gives, ogg = —110.4 MPa.

Transposing equation (1.18) for oy, and putting
of = 875.6 MPa from (i) when p = p, =400bar,
gives, org = 519.6 MPa.

Thus, over the pressure range 0 < p < 400bar, the
general post-autofrettage stress—pressure relation-
ships are:

For the liner

op = 10.06p — 110.4 MPa from equation (1.17)

or=K-p=573p

o, = —0.57p — 4.26 MPa from equations (1.1)
and (1.17)
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e For the fibre
o = 8.90p + 519.6 MPa from equation (1.18)

Von Mises equivalent stress in the liner at any pressure is
found from equation (1.21).

3. Evaluation of strains in autofrettage
Procedures given in Section 1.8.4 are followed.

Although in general liner strains are given by the
algebraic sum of plastic and elastic strain components.
hoop strains are more conveniently evaluated in terms of
fibre stresses, invoking the liner/fibre hoop strain equality
condition. Thus, applying equation (1.26) at p=
pa = 400 bar, where oy = 875.6 MPa from evaluation 2
above, gives total hoop strain to autofrettage oy = 1.21
percent. Applying equation (1.26) at p =0, where
of = org = 519.6 MPa from evaluation 2 above. gives
total residual hoop strain gygy = 0.72 percent.

Longitudinal liner strain evaluation is less straight-
forward, requiring the summing of plastic and clastic
components, the former being obtained in terms of plastic
hoop strain &g, as follows:

Liner mean stress values over the strain increment of
PIessure pyg — pa are, from common data stresses at Pyo
(above) and evaluation 2, step (i) opy = 296.0 MPa,
om = 200MPa, o, = —-22.2MPa, and Y, =[(276+
293)/2] MPa = 284.5 MPa.

Applying equation (1.23), with pre-stresses ogg and oy
from evaluation 2, liner plastic hoop strain induced by
autofrettage eo, = 0.85 percent.

Hence, applying equation (1.30) liner plastic long-
itudinal strain from autofrettage &, = 0.26 percent.

Selecting the pre-autofrettage zero pressure point as the
origin for [liner elastic strain calculation, where
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p=0,09 =0,01 =0, 0, = 0: longitudinal elastic strain g
at autofrettage (p, = 400 bar) is given by equation (1.29),
inserting stresses directly from evaluation 2, steps (i) or (v).
Thus, ¢&.=0.22 percent, and total strain ¢, =
elp + €1 = 0.48 percent. Similarly, longitudinal elastic
strain g post-autofrettage (p = 0) is given by equation
(1.29), inserting stresses from evaluation 2, step (v). Thus,
gle = 0.05 percent, and total residual strain gy =
e + €1 = 0.31 percent.

2.1.3.3 Comparison of theoretical and experimental
autofiettage strains

Table 2.2 shows strain comparisons for cylinder 1, giving
total (elastic + plastic) strains at the autofrettage
conditioning pressure, and total residual strains on release
of that pressure to zero, for hoop and longitudinal
directions. Theory underestimates hoop strain at auto-
frettage by about 7 percent, and at subsequent zero
pressure by about 4 percent. Longitudinal strains, which
are around one-third of corresponding hoop strains, are
20 percent overestimated by the theory compared with
measured values. One possible explanation for the latter
difference may be the theorctical idealization of the
equivalent stress—strain curve to a sharp elastic/plastic
transition, which would be expected to reflect greater
proportional effect at lower strains. Another factor could
simply be author reading error in taking small strains
from the Alcoa graphs. Suffice it to say that theory
predicts longitudinal strains to a correct order of
magnitude. From a practical aspect the most important
strain in autofrettage is residual hoop strain gy, because
of its close relationship to installed liner/fibre pre-stresses,
and theory appears to predict this strain with good
accuracy.
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Table 2.2 Comparison of experimental and theoretical strains
over autofrettage cycle for Alcoa cylinder number 1

Experimental  Theoretical

Strain identity (%) (%)
Total hoop atp = p, 1.30 1.21
Residual hoop at p = 0 0.75 0.72
Total longitudinal at p = p, 0.40 0.48
Residual longitudinal at p = 0 0.25 0.31

Total fibre area ag, 5.41 mm*/mm; autofrettage pressure p,,
400 bar.

These results, when taken with those for burst evalua-
tions in Section 2.1.2, demonstrate that the developed
theoretical techniques in general, and those for establishing
strain hardening in particular, produce reasonably reliable
answers.

2.2 Cylinder design from a basic
specification

In this section the theory is applied following the usual
route for designing a hoop-wrapped cylinder, starting with
basic parameters, such as liner/fibre materials and their
associated mechanical properties, pressure duty of the
cylinder including service and burst safety-requirements,
together with any other safety-related influences on the
design.

The design procedure is illustrated by considering a
cylinder of basic specification similar to the Alcoa cylinder
used for comparisons in Section 2.1, as follows:
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2.2.1 Cylinder details

2.2.1.1 Liner

e Material: aluminium alloy 6061.
e Mechanical properties:
— yield stress, 276 MPa;
— tensile strength, 324 MPa;
— tensile modulus, 69 x 10° MPa;
— Poisson’s ratio, 0.3.

e External diameter: 330.2 mm.

2.2.1.2 Fibre

e Material: E glass.

e Mechanical properties:
— tensile strength (impregnated strand), 1724 MPa;
— tensile modulus, 72.4 x 10° MPa.

e Stress ratio: 2.5 (=tensile strength/stress at service
pressure).

2.2.1.3 Pressure duty

e Nominal service pressure pg: 207 bar.
e Hydrostatic test pressure py: 311 bar (=1.5ps).
e Minimum burst pressure py,: 517 bar (=2.5p;).

2.2.14 Additional considerations

Some design specifications require that minimum burst
pressure for the unwrapped liner shall not be less than a
prescribed proportion of the wrapped cylinder service or
test pressure as a safety precaution against fibre damage/
loss. While this does not affect application of the design
theory, it does impose a parallel requirement on liner wall
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thickness, and will therefore be taken into consideration in
the following design exercise. For this purpose the widely
used condition py > 0.85p, will be applied.

2.2.2 Evaluation of liner wall thickness

Burst optimization theory of Section 1.5.1 describes three
different burst pressures that need to be considered as part
of design, namely py;, poa. and ppe, where pu < pod < Poe.
Required minimum burst pressure pp, is given by the
specification as 517 bar. Critical burst pressure pp., once
set relative to pp, governs liner wall thickness, and design
burst pressure ppq ensures that the correct amount of fibre
reinforcement is applied to result in a hoop burst mode. As
stated in Section 1.5.1, the margin between these different
burst pressures will depend on design/manufacturing
control confidence. However, for the present exercise let
it be assumed that critical burst pressure is designated as
110 percent of required mintimum burst pressure; then,
DPbec = 569 bar.

Liner wall thickness is found using this prescribed py. in
equation (1.9), but since current yield stress Y at critical
burst is unknown because of strain-hardening. solution
follows the procedure of Section 1.9.3.1, first conducting a
conditional evaluation on the basis of an assumed current
yield stress value, and then by subsequent analysis
confirming that the assumption was correct. In the
following worked calculations, steps (i), (ii), and (iii)
cover the basic critical burst evaluation, and steps (iv) to
(x) inclusive cover validation of the initially assumed yield
stress.

At the critical burst condition equivalent plastic straining
of the liner is expected to be of the same order as that at
instability in simple tension. Therefore for a first
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approximation current yield stress of the liner is assumed
equal to tensile strength.

The tensile stress—strain model for the liner material is
(see Section 2.1.2.2)

Y = 324[0.85 + S(eep) — 41.7(2cp)’]

(1)

(if)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)

Assuming Y = T} = 324 MPa for first approxima-
tion, equation (1.9) gives 4 = 0.0387 via the numer-
ical method recommended in Section 1.3.3.2. after
equation (1.9). Hence for prescribed D = 330.2 mm,
t=A-D =1278mm, d=(D—2t)=304.6mm,
and K = d?/(D* —d?*) = 5.71.

Principal liner stresses at pp. are, following the
evaluation procedure recommended in Section
1.3.3.2, after equation (1.9): oy = K- py. = 324.9
MPa, o, from equation (1.6) = —49 MPa, oy from
equation (1.7) = 149 MPa.

From equation (1.10), putting og = 149 MPa from
(ii), fibre area for critical burst ag = 7.84 mm?/mm.
Applying equation (1.31), using stresses from (ii),
liner plastic hoop strain gy, = 2.3 percent to failure
at ppc.

Evaluating liner stress coefficient Z in the expression
associated with equation (1.15), Z = 9.39.

Applying Z =9.39 in equation (1.22), liner initial
yield pressure pyy = 315.5 bar.

Evaluating liner principal stresses at py: oy =
Z - py = 296.3MPa, 0y = K- py = 180.2MPa, o, =
—18.9 MPa from equation (1.1).

From (i1) and (vii) liner mean stresses over the strain
increment corresponding to pyy — pye are therefore:
oom = 222.7TMPa, oy, =252.6 MPa, o, = —34.0
MPa, and Y, =[(276 4 324)/2] MPa = 300 MPa.
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(ix) Putting e¢, from (iv) in equation (1.24), liner
equivalent plastic strain &, = 6.1 percent.

(x) From the tensile stress—strain model above, at
gep = 6.1 percent, ¥ = 324 MPa, and hence the first
approximation result of wall thickness = 12.78 mm is
confirmed as correct.

Result:

e Liner wall thickness + = 12.78 mm for a critical burst
pressure of 569 bar [and for information fibre
reinforcement area to give pp. = 7.84 mm’/mm (total
both sides)].

Note 1

If Y from step (x) had been found to be less than the
initially assumed 7j, steps (i) to (x) would be repeated
using this lower Y value. The outcome would be a larger
wall thickness.

Note 2

The prescribed value of py. = 1.10py,; selected in this design
exercise has coincidentally given a py. almost identical to
that evaluated theoretically for the manufactured Alcoa
cylinder (see Section 2.1.2.2, evaluation /). Consequently,
the wall thickness emerging from this design exercise 1s
almost identical to that of the Alcoa cylinder. Clearly, if a
different prescribed value of p,. had been used, the
coincidence would not have arisen.

2.2.2.1 Investigation of additional requirement py, > 0.85py,

Since pp = 311 bar, minimum liner burst pressure accord-
ing to this requirement is py > 264 bar. Referring to
Annex 2, the ‘Mean Diameter’ burst formula (equation
A2.1) would require for this burst pressure a liner wall
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thickness of

330.2 x 26.4

(2 x 1.09 x 324 + 26.4) i

and the von Mises based formula [equation (A2.2)], solved
numerically, using mean yield stress = (276 + 324)/2 MPa
requires a liner wall thickness of

t=12.1mm

As supporting evidence, it is known from the Alcoa test
results (Fig. 2.1) that a liner of wall thickness = 12.75 mm
gave a burst pressure around 276 bar, and this would pro
rata indicate a thickness of 12.2 mm for a burst pressure of
264 bar.

Therefore from the above, it seems that the liner burst
requirement gives a wall thickness just (5 percent) less than
the 12.78 mm set by the critical burst design condition
Pve = 1.10 py, and thus the latter overrides.

It is beyond the scope of this design theory to enter into
debate on safety factors set by regulatory or standards
bodies, but in so far as calculations to the theory are
concerned, clearly if the liner burst requirement had given
a wall thickness greater than that from py. as a percentage
of pur, then py,. would need to be re-evaluated from
equation (1.9) accordingly.

2.2.3 Evaluation of fibre reinforcement area

Having designated py. = 1.10py,, it seems reasonable to set
design burst pressure p,q midway between these two
pressures. Therefore prg = (Por + Puc)/2 = 1.05pp, = 543
bar.

Fibre area required to give this design burst is found
using theory of Section 1.5.2, applying equations (1.11a)
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and (1.12a), but since liner current yield stress Y at ppq 18
initially unknown because of strain-hardening, solution
follows the procedure of Section 1.9.3.2, using the wall
thickness established in Section 2.2.2, i.e. = 12.78 mm.,
giving A = 0.0387, K =5.71, and d = 304.6 mm.

The procedure involves first a conditional evaluation on
the basis of an assumed current yield stress, the latter being
confirmed by subsequent analysis. In the following worked
calculations, steps (i) and (i) cover the basic fibre area
evaluation, and steps (ii1) to (ix) inclusive cover validation
of the assumed yield stress. Two rounds of calculation are
used to arrive at a correct solution, although, as will be
seen, the result from the first round is sutficient to provide
a good estimate.

The tensile stress—strain model is, as previously (see
Section 2.1.2.2)

Y = 324[0.85 + 5(ecp) — 41.7(eep)’]

For a first approximation, liner current yield stress at
design burst ppq 1s assumed to be that already established
(in Section 2.2.2) at py., i.e. Y =324 MPa, since ppq 1$
within 5 percent of pp..

(i)  With respect to equation (1.11a), associated expres-
sions for constants m and n give, m = 284.5 MPa and
constant # = 10.49 x 10°(MPa)>. Hence, liner prin-
cipal stresses at burst are: op = 241.0 MPa from
equation (1.11a), o= K- ppq = 310.1 MPa, o, =
—42.9 MPa from equation (1.1).

(1) From equation (1.12a), putting oy = 241.0 MPa
from (i), for ppg = 543 bar, fibre area «ay =
6.02 mm?/mm.

(1i1) From equation (1.31), liner plastic hoop strain
eop = 2.15 percent to hoop failure at pyy.
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(iv)
(v)

(vi)

(vii)

(viii)

(ix)
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Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 9.86.
Applying Z = 9.86 from (iv) in equation (1.22) liner
initial yield pressure pyo = 303.2 bar.

Evaluating liner principal stresses at py: o9 =
Z - pyo =299.0MPa, 0y = K- py = 173.1 MPa, o, =
—17.6 MPa from equation (1.1).

From (i) and (vi) mean liner stresses over the strain
increment corresponding to pyo — puq are therefore:
ogm = 270.0 MPa, oy, =241.6 MPa, o, = —30.3
MPa, and Y., = [(276 4 324)/2] = 300 MPa.

Putting &g, from (iii) in equation (1.24) liner
equivalent plastic strain &, = 3.92 percent.

From the tensile stress—strain model, at e, = 3.92
percent, Y = 318.1 MPa. This is within 2 percent of
assumed Y = 324 MPa made at the start of calcula-
tion, close enough to make an informed estimate that
true Y ~ 320 MPa, but to fully illustrate the calcula-
tion process a second approximation will be made.

For a second approximation, liner current yield stress at
design burst is assumed to be that from the first
approximation, i.e. 318 MPa.

(1)

(i1)

(iii)

With respect to equation (1.11a), associated expres-
sions for constants m and » give, m = 284.5 MPa and
constant n = 14.46 x 103 (MPa)’. Hence, liner prin-
cipal stresses at burst are: oy = 218.2MPa from
equation (1.11a), o= K- ppg = 310.1 MPa, o, =
—43.8 MPa from equation (1.1).

From equation (1.12a), putting op = 218.2 MPa
from (i), for puq = 543bar, fibre area agy
= 6.36 mm?/mm.

From equation (1.31), liner plastic hoop strain
gop = 2.18 percent to hoop failure at prg.
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(iv) Evaluating liner stress coefficient Z from the expres-
sion associated with equation (1.15), Z = 9.79.

(v) Applying Z =9.79 from (iv) in equation (1.22) liner
initial yield pressure pyy = 305.0 bar.

(vi) [Evaluating liner principal stresses at  py:
09 = Z - py =298.6 MPa, 01 = K- pyy = 174.2 MPa,
oy = —17.8 MPa from equation (1.1).

(vil) From (i) and (vi) mean liner stresses over the strain
increment corresponding to pyy — puy are therefore:
Ogm = 258.4MPa, oy, = 242.2MPa, o, = 308
MPa, and Y;, = [(276 + 318)/2] = 297 MPa.

(vi1) Putting &g, from (ii) in equation (1.24), liner
equivalent plastic strain &., = 4.24 percent.

(ix) From the tensile stress-strain  model. at
gep = 4.24 percent, ¥ = 319.8 MPa. Hence Y is con-
firmed at 320MPa at design burst pressure
Pbd = 543 bar.

2.2.3.1 Final calculation for fibre area at design burst

Having established that the liner current yield stress at
design burst is ¥ = 320 MPa, it now remains to conduct a
final evaluation of fibre area using this value. With respect
to equation (1.11a), associated expressions for constants m
and n give, m = 284.5MPa and n = 13.13 x 10°(MPa)".
Hence, from equation (l.1la) at ppg = 543 bar,
o9 = 226.5MPa, and using this value in equation (1.12a)
gives fibre reinforcement area ayy = 6.24mm”/mm (total
both sides).

2.2.4 Evaluation of design stresses

Having designed liner wall thickness and fibre area, theory
of Sections 1.6.2 and 1.6.3 is applied to evaluate design
stresses, starting with pre-stresses.



92 Hoop-wrapped, composite, internally pressurized cylinders

The definitive value of liner stress coefficient Z is
calculated from the expression associated with equations
(1.15) and (1.17) for r=12.78mm and ay = 6.24mm?/
mm. Thus Z = 9.80.

The definitive value of fibre stress coefficient X is
calculated from the expression associated with equation
(1.18), using Z = 9.80, to give X = 8.67.

Equation (1.19) is solved applying the prescribed fibre
stress ratio (FSR) = 2.5 at a design pressure py equal to
service pressure py = 207 bar (see Section 2.2.1.2), giving a
fibre pre-stress opg = 510.1 MPa.

Substituting this value of op in equation (1.20) gives
liner pre-stress ogg = —124.5 MPa.

Permanent diameter expansion 6D required to produce
these pre-stresses is given by equation (1.25) as
0D = 2.3mm. (The autofrettage pressure required to give
these pre-stresses and expansion is deduced in Section 2.2.5).

The complete definitive stress—pressure relationships in
the elastic range of cylinder operation are therefore given by:

e For the liner

op = 9.80p — 124.5MPa from equation (1.17)

o1 = 5.71p MPa (oo =K-p)
o, = —0.58p — 4.8 MPa from equations (1.1) and
(1.17)

e For the fibre
or = 8.67p+ 510.1 MPa from equation (1.18)

From a cyclic fatigue aspect it is interesting to evaluate
liner/fibre stresses at specified hydrostatic test pressure
pn = 311 bar, thus, putting p = py, in the above

om = 779.7 MPa
ogn = 180.3 MPa
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Olh = 177.6 MPa
o = —22.8 MPa

From equation (1.21) this combination of liner stresses
produces a von Mises equivalent stress o. of 201.8 MPa
which equals 73 percent of Yy, a level very similar to that
accepted in all-metal industrial gas cylinders. (Autofrettage
increases Y above Y, and thereby effectively reduces this
percentage further).

2.2.5 Evaluation of autofrettage pressure

The procedure is visualized by reference to simplified
analogy Fig. 1.6. Liner pre-autofrettage stress line ¢ and
post-autofrettage stress line b are both defined (see Section
2.2.4). Initial yield point 1 on line « is readily established
via equation (1.22), but autofrettage ‘conditioning’ point 3,
for the strain-hardened liner is unresolved because current
yield stress Y at the point is initially unknown. However,
point 2 on line b corresponding to initial yield stress Yy can
be established, and this therefore is the starting point for
calculation.

The procedure described in Section 1.7.3 is followed,
drawing on theory developed in Sections 1.7.1, 1.7.2, and
1.7.3. Design constants already established are: A4 =
0.0387, K=5.71, Z=9.80, X = 8.67, ggp = —124.5MPa,
oro = 510.1 MPa. The tensile stress/strain model for the
liner is, as previously: Y = 324[0.85 + 5(ecp) — 41.7(80p)2]
(see Section 2.1.2.2).

2.2.5.1 Basic calculations

(i) Liner initial yield pyo is given by equation (1.22)
putting Yy = 276 MPa. Thus, pyy = 304.7 bar.
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(i) Liner stresses at py are: oy =298.6 MPa from
equation (1.15), o =K-py=174.0MPa, o, =
—17.7MPa from equation (1.1).

(ii1) Liner plastic hoop strain eg, is given by equation
(1.23) as, gg, = 0.86 percent (noting that this is a
constant quantity defined by the elastic stress/pressure
characteristics, irrespective of the magnitude of
current yield stress).

(iv) Writing liner principal stresses generally in terms of
pressure from Section 2.2.4, the principal stress
differences are: (op — 1) = (4.09p — 124.5) MPa;
(01 —o0:) = (6.29p + 4.8) MPa; (0, — 0g) = (—10.38p +
119.7)MPa; and the sum of the squares of these
differences is 164.03p> — 3443p +29851. It follows
that:

(v) At autofrettage pressure p,, von Mises yield criterion
(1.2) 1s represented by

2Y% = 164.03p2 — 3443p, + 29851
or
2Y?%/164.03 = p2 — 20.99p, + 182

This is the general form of the quadratic for establishing
autofrettage pressure p, at current strain-hardened yield
stress Y.

However, since Y is initially unknown, the procedure for
fixing p, involves first a conditional evaluation on the basis
of an assumed yield stress, the latter being confirmed by
subsequent analysis. In the following worked calculation,
steps (1) and (ii) cover the basic autofrettage pressure and
related stress evaluation, and steps (iii), (iv), and (v) cover
validation of the assumed yield stress. Two rounds of
calculation are necessary to arrive at a correct solution.



Application of the theory 95

The starting point is to initially assume that Y at
autofrettage = Y.

2.2.5.2 Evaluating yield stress at autofrettage

(1)
(if)

(ii1)

(iv)

v)

(i
(i

(i)

First approximation to autofrettage pressure, putting
Y=Yy=276 MPu

Solving the quadratic gives p, = 397.7 bar.

Liner stresses at p, = 397.7 bar are from Section 2.2.4:
oy = 265.2 MPa, o1 = 227.1 MPa, 6, = —27.9 MPa.
Over the strain increment corresponding to pyy — pa,
liner mean stresses are., from (1) and Section 2.2.5.1.
step (11), above: oy, = 281.9 MPa, oy, = 200.6 MPa.
O = —22.8 MPa, Y, = Yy = 276 MPa.

Hence, from equation (1.24), liner cquivalent plastic
strain increment o, = 1.43¢g, = 1.23 percent, where
ggp is given by Section 2.2.5.1, step (ii1), above.
From the tensile stress-strain model, &, = 1.23
percent gives a corresponding } = 293.3 MPa. This
value is sufficiently larger than the assumed
Y =276 MPa to warrant a second approximation.

Second approximation to autofrettage pressure, putting
Y =293.3 MPu

Solving the quadratic gives p, = 417.5bar.

Liner stresses at p, = 417.5 bar are from Section 2.2.4:
o = 284.7 MPa, oy = 238.4 MPa, o, = —29.0 MPa.
Over the strain increment corresponding to pyy — pa.
liner mean stresses are, from (i1) and Section 2.2.5.1.
step (ii), above: oy, = 291.7MPa, o, = 206.2 MPa,
om= —23.4MPa, Y,,=[(276 + 293.3)/2] MPa=284.7
MPa.
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(iv) Hence, from equation (1.24), liner equivalent plastic
strain increment g, = 1.42 g, = 1.22 percent where
ggp 1s given by Section 2.2.5.1, step (iii), above.

(v) From the tensile stress-strain model, &, = 1.22
percent gives a corresponding Y = 293.1 MPa. This
value is virtually identical to that assumed, therefore
Y =293MPa is the strain-hardened yield stress at
autofrettage.

2.2.5.3 Final calculations

Substituting ¥ = 293 MPa in the quadratic confirms auto-
frettage pressure at 417 bar, this being the pressure to
produce the required elastic stresses in the designed cylinder.

Cylinder stresses at autofrettage pressure p, are, from
Section 2.2.4

op = 284.2 MPa
o1 = 238.1 MPa
or = —29.0 MPa
or = 871.6 MPa

The permanent diametrical expansion produced by auto-
frettage is D = 2.3 mm (see Section 2.2.4).

2.2.6 Summary of cylinder design results from
application of the theory

The following design results apply to the cylinder with
basic specification given in Section 2.2.1.

e Design wall thickness = 12.78 mm.
(To meet a critical burst pressure of 569 bar = 110
percent of required minimum burst pressure). (The
theoretical fibre reinforcement area to give critical
burst being 7.84 mm?/mm total both sides.)
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e Design fibre reinforcement area = 6.24mm’/mm total
both sides.
(To give a design burst pressure of 543 bar = 105
percent of required minimum burst pressure.)
e Generalized post-autofrettage stress expressions in
pressure range 0 < p < autofrettage pressure.
— Liner
Hoop stress, og = 9.80p — 124.5 MPa
Longitudinal stress, oy = 5.71p MPa
Mean radial wall stress, o, = —0.58p — 4.8 MPa
— Fibre
Axial stress, oy = 8.67p + 510.1 MPa
e Autofrettage pressure necessary to give required pre-
stresses = 417 bar.
(Permanent diameter expansion of liner resulting from
autofrettage = 2.3 mm.)
e Particular post-autofrettage stresses at key pressures
are given in Table 2.3.

Table 2.3 Post-autofrettage stresses at key pressures

Zero Service Test Autofrettage
pressure, pressure,  pressure, pressure,
Stress identity p=0 p=207bar p=311bar p=41717bar

Hoop

o9 (MPa) —124.5 78.4 180.3 284.2
Longitudinal

o(MPa) 0 118.2 177.6 238.1
Radial

o, (MPa) —4.8 —16.8 —22.8 —29.0
Equivalent

0. (MPa)(liner) 122.2 120.2 201.8 292.9

Fibre axial
or (MPa) 510.1 689.6 779.7 871.6
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2.3 General comments

The explicit nature of the developed formulae linking the
process variables enables design execution from various
entry points, giving the design theory broad flexibility of
use. This is evident in the different adaptation used in
Section 2.1 when comparing theory with experiment, to
that used in Section 2.2 when designing from basics. This
adaptability, together with the transparent cause-effect
relationships self-evident in the formulae, provide the
design engineer with a comprehensive philosophy for
understanding the mechanical behaviour of the hoop-
wrapped cylinder.

An important general point arising from application of
the design theory is that results are specific to the
prescribed input data on liner and fibre, and also to their
interaction. This applies to wall thickness, fibre area, pre-
stresses, autofrettage pressure, and everything else emerg-
ing from the design exercise. A direct consequence of this is
that the design parameters should be treated as actual, not
minimum, values in the manufactured cylinder. This is in
contrast to the approach followed in manufacturing an all-
metal cylinder where it is necessary to respect only
minimum design values. A secondary consequence is that
best results in exploiting this theory will be obtained where
manufacturing process control is tight, so that product
variations are minimal. While the theory can be usefully
employed to study and reveal effects of variability in the
manufactured cylinder, it cannot directly influence these
variables.

A particular issue arising from this general point is the
effect of liner wall eccentricity on the behaviour under
pressure of the composite cylinder. It is clear that with a
metallic cylinder, eccentricity on any transverse plane
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will be accommodated by progressive change in wall
stress to satisfy the condition of constant pressure
loading per unit length of circumference. However, for a
composite cylinder the situation is less clear, depending
on the support provided by the fibre. Two basically
different conditions could be postulated. In the first, the
fibre is free to slide within its resin tunnel, such that fibre
tensile stress is uniform around the liner circumference.
and commensurate with average hoop strain of the liner.
In the second condition, the fibre is locked to the liner by
the resin and therefore experiences local effects of liner
hoop straining which will vary inversely with liner wall
thickness. As a consequence fibre tensile stress would
vary around the circumference. Such a condition could
be accommodated by shear forces at the fibre/resin
interface, augmented by fibre coil friction effects.
especially with typical maximum levels of eccentricity
(circa =10 percent) expected in liners, and to the author
this appears the more probable of the two postulates.
Accordingly, it would be appropriate to apply theory
concerned with cylinder bursting to the thinnest part of
the liner, as though the liner was this thickness at all
points. However, for designing liner/fibre pre-stresses
and associated autofrettage pressure it would be more
appropriate to consider the average situation as given by
the liner mean wall.

There is a general point concerning the effect on critical

burst pressure of liner plastic strain development. Critical

burst pressure is a key part of the design theory because it
defines liner wall thickness, as given by equation (1.9),

where it is seen that liner current yield stress influences the
outcome. For any given liner, current yield stress at critical

burst depends on the amount of strain-hardening, and
hence on the amount of plastic strain developed in
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pressurizing to burst. It follows from equation (1.9) that
the thinnest liner meeting a given critical burst will be that
where the overwrapped fibre permits greatest strain
development prior to fracture. This in turn leads to the
(at first sight surprising) conclusion that use of a stiffer
fibre may, by limiting strain development, require a thicker
liner to meet a given critical burst pressure. In other
words, it should not be taken as a foregone conclusion
that the use of a stiffer fibre automatically leads to a
thinner liner.

In reviewing Sections 2.1 and 2.2 it will be seen that
much of the calculation is taken in evaluating current
strain-hardened yield stress Y, so that a true representative
value of the latter may be used in the theoretical formula
of interest. The procedure for establishing Y involves
successive approximation. Irrespective of the calculation
method used (discussed below), it is worthwhile observing
the underlying mechanics of the procedure, which tend to
be obscured by the volume of generated data.

In solving the autofrettage condition, successive
approximation starts by assuming current yield stress
Y is the initial liner yield stress Yy, in the knowledge that
plastic strain in autofrettage will generally give values
for Y closer to Y, than tensile strength 7;. The effect of
assuming a ‘weak’ liner is to cause calculation to over-
estimate plastic straining for a given applied pressure,
and hence produce an overestimate of true yield stress
from the tensile curve. Conversely, in the succeeding
round of calculation this overly ‘strong’ cylinder from
the preceding round strains less than the true cylinder,
and therefore gives an underestimate of true yield stress,
but at a value greater than initial yield stress Y,. Thus
the process successively ‘homes in” on the true required
value of Y.
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Yield stress Y
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Fig. 2.3 Successive approximation to liner current yield stress
at autofrettage and burst

In solving the burst condition, successive approxima-
tion starts by assuming current yield stress Y is equal to
tensile strength 7j, in knowledge that plastic strain in
bursting will generally give Y closer to 7 than Y,. The
calculation process follows a pattern exactly opposite to
that described for autofrettage above, giving first an
underestimate, and then an overestimate less than 7j,
and so on.

The two successive approximation processes described
above are illustrated in Fig. 2.3.

Note

With experience in using the theory for a particular
combination of liner/fibre materials, and applying similar
design ratios, it may be possible to make a sufficiently
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accurate estimate of yield stress at autofrettage and burst
without the need for successive approximation.

All design calculations carried out in Section 2 were by
‘smart’ calculator, mainly with the object of testing
techniques, but also to prove that the theory could be
applied without the need for a computer. However, this
said, there is no doubt that the use of spreadsheet
programmes, plugging in formulae from the theory,
would greatly reduce the calculation burden, especially in
the case of successive approximation. This aspect is left
with the theory user.
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Annex 1

Explicit closed-form
expressions for principal
stresses in liner at critical burst
pressure

A1.1 In terras of basic parameters
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A1.2 In terms of critical burst pressure
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Annex 2

Burst theory for unwrapped
cylinder

While it is possible to derive expressions for pressure in the
plastic range in terms of current yield stress, using an
appropriate yield criterion and cylinder wall/diameter
parameters, the prediction of burst pressure for a ductile
strain-hardening metallic cylinder is quite complex. due to
difficulty in predicting the point of instability where strain
hardening can no longer keep pace with the reduction in
wall thickness caused by expansion. It is important to
recognize that the triaxial stress conditions in the cylinder
are different to this in simple tension, and therefore
equivalent strain to failure will not be the same in these two
deformation processes. Generally speaking, equivalent
strain to failure in the cylinder will be less than that in
simple tension, implying that current strain-hardened yield
stress will also be less than tensile strength. But conversely,
because of the greater constraint on straining in the
cylinder compared with simple tension, hoop stress at
failure will exceed current yield stress.

Traditionally, this complexity in predicting burst from
fundamental theory has been avoided by using simple
semi-empirical  burst formulae containing ‘factors’
adjusted to provide reasonable agreement with measured
results. The most common of these is the so-called ‘mean
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diameter’ formula:

2*UT
(D~

pp=F

where T is tensile strength and F is an adjustment factor;
the quantity (D — ) being recognizable as cylinder mean
wall diameter.

This formula is believed to have its roots in the Tresca
maximum shear stress yield criterion, which ignores the
effect on yielding of the intermediate size principal stress
(in this case the longitudinal stress). According to Tresca
yielding occurs when (greatest — smallest) principal stress
equals the yield stress. For the unwrapped cylinder greatest
stress is hoop stress oy = pd/2t, and smallest principal
stress is radial through-wall stress o, which has a mean
value —p/2. Thus according to Tresca

d
r="48
giving
uY  uy
PG+ -0

This expression is seen to resemble the above burst
formula for py, except that in the latter, current yield
stress Y has been upgraded to tensile strength 7', and the
factor F added. Both of these ‘adjustments’ correct the
basic tendency of Tresca to underestimate the cylinder’s
strength due to ignoring the effect of the intermediate
principal stress.

Gas cylinder industry experience indicates that for the
grades of steels and aluminium alloys typically used for
hoop-wrapped cylinder liners, factor F in the above burst
formula i1s around 1.09. Thus the ‘mean diameter’ burst
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formula becomes

2T

= 1.09
Po D=0

(A2.1)

As part of developing hoop-wrapped cylinder design
theory the author considered it of interest to derive the
equivalent of equation (A2.1) taking all three principal
stresses into account in von Mises yield criterion. i.e.
putting oy = pd/2t, o1 = pd* /(D> — d°), 0, = —p/2 in

2Y2 = (09 - 01)2 + (01 - Ur)z + (01' — 69)2

After tidying by ignoring negligibly small terms, this
resulted in the expression

2 2A4(1 — A)
- y. =’ A2.2
P= A T JT=aa (A2-2)
where
A=1/D

Although equation (A2.2) is likely to be more fundamen-
tally correct than equation (A2.1), it still suffers from the
same problem of not knowing current Y at the point of
instability, i.e. at maximum (burst) pressure. Furthermore,
equation (A2.2) is more awkward to use than equation
(A2.1), especially in transposing for wall thickness. By
comparing with known burst results, and also by compar-
ing with equation (A2.1), it was found that equation (A2.2)
gives reasonably accurate burst pressure prediction putting
current yield stress at instability as the mean of initial yield
stress Yy and tensile strength 7. a result which is
qualitatively consistent with known facts of the burst
condition.






Annex 3

Tensile stress—strain model for
estimating strain-hardened
yield stress of liner

Current yield

stress Y
A
T
Y
YO /
Plastic strain ¢
£ Emax -

Fig. A3.1 Plastic stress—strain model
Materials used for hoop-wrapped liners are generally in a
heat-treated, hardened/tempcred condition for which the
yield/tensile ratio is around 0.9. For these materials the
plastic stress—strain curve can be approximated by the
polynomial

Y = a+ be + ¢’ (A3.1)
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Where the three unknown constants a, b, ¢, are given by
the three properties of the curve

Y=Y, when ¢ = 0
Y=T1 when & = &pax

dY/de =0 when € = epax
Applying these conditions to equation (A3.1) results in
a=Yy
b= 2Ty — Yy)/emax
¢ = —(Ti = Y0)/(emar)’

Substituting the above values for a, b, ¢, into equation
(A3.1), and writing Y,/ 7T} = x, provides the final expression

Y= ﬂ[.x+{M}e— {1 _x}gz] (A3.2)

2
€max 8mux

Note
The model is valid for equivalent plastic strain & < &p,,x.
(FOI‘ £€> Emax, Y = TI)
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